Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 29(23): 4784-4796, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37463058

RESUMEN

PURPOSE: Vaccination with dendritic cell (DC)/multiple myeloma (MM) fusions has been shown to induce the expansion of circulating multiple myeloma-reactive lymphocytes and consolidation of clinical response following autologous hematopoietic cell transplant (auto-HCT). PATIENTS AND METHODS: In this randomized phase II trial (NCT02728102), we assessed the effect of DC/MM fusion vaccination, GM-CSF, and lenalidomide maintenance as compared with control arms of GM-CSF and lenalidomide or lenalidomide maintenance alone on clinical response rates and induction of multiple myeloma-specific immunity at 1-year posttransplant. RESULTS: The study enrolled 203 patients, with 140 randomized posttransplantation. Vaccine production was successful in 63 of 68 patients. At 1 year, rates of CR were 52.9% (vaccine) and 50% (control; P = 0.37, 80% CI 44.5%, 61.3%, and 41.6%, 58.4%, respectively), and rates of VGPR or better were 85.3% (vaccine) and 77.8% (control; P = 0.2). Conversion to CR at 1 year was 34.8% (vaccine) and 27.3% (control; P = 0.4). Vaccination induced a statistically significant expansion of multiple myeloma-reactive T cells at 1 year compared with before vaccination (P = 0.024) and in contrast to the nonvaccine arm (P = 0.026). Single-cell transcriptomics revealed clonotypic expansion of activated CD8 cells and shared dominant clonotypes between patients at 1-year posttransplant. CONCLUSIONS: DC/MM fusion vaccination with lenalidomide did not result in a statistically significant increase in CR rates at 1 year posttransplant but was associated with a significant increase in circulating multiple myeloma-reactive lymphocytes indicative of tumor-specific immunity. Site-specific production of a personalized cell therapy with centralized product characterization was effectively accomplished in the context of a multicenter cooperative group study. See related commentary by Qazilbash and Kwak, p. 4703.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Lenalidomida/uso terapéutico , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Trasplante Autólogo , Células Dendríticas , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Dexametasona/uso terapéutico
2.
Haematologica ; 106(5): 1330-1342, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33538148

RESUMEN

We have developed a personalized vaccine whereby patient derived leukemia cells are fused to autologous dendritic cells, evoking a polyclonal T cell response against shared and neo-antigens. We postulated that the dendritic cell (DC)/AML fusion vaccine would demonstrate synergy with checkpoint blockade by expanding tumor antigen specific lymphocytes that would provide a critical substrate for checkpoint blockade mediated activation. Using an immunocompetent murine leukemia model, we examined the immunologic response and therapeutic efficacy of vaccination in conjunction with checkpoint blockade with respect to leukemia engraftment, disease burden, survival and the induction of tumor specific immunity. Mice treated with checkpoint blockade alone had rapid leukemia progression and demonstrated only a modest extension of survival. Vaccination with DC/AML fusions resulted in the expansion of tumor specific lymphocytes and disease eradication in a subset of animals, while the combination of vaccination and checkpoint blockade induced a fully protective tumor specific immune response in all treated animals. Vaccination followed by checkpoint blockade resulted in upregulation of genes regulating activation and proliferation in memory and effector T cells. Long term survivors exhibited increased T cell clonal diversity and were resistant to subsequent tumor challenge. The combined DC/AML fusion vaccine and checkpoint blockade treatment offers unique synergy inducing the durable activation of leukemia specific immunity, protection from lethal tumor challenge and the selective expansion of tumor reactive clones.


Asunto(s)
Vacunas contra el Cáncer , Leucemia Mieloide Aguda , Animales , Antígenos de Neoplasias , Células Dendríticas , Humanos , Leucemia Mieloide Aguda/terapia , Ratones , Linfocitos T , Vacunación
3.
Blood Cells Mol Dis ; 55(2): 180-6, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25564295

RESUMEN

Gaucher disease (GD) is characterized by glucocerebroside (GC) accumulation due to defective activity of the glucocerebrosidase (GlcCerase) enzyme. Monocytes and macrophages exhibit the highest GlcCerase activity and are most prominently affected by GC engorgement. As GD patients tend to exert various immune system-related changes, this study was designed to investigate potential effects of monocyte dysfunction on these alterations. Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) of untreated GD patients and healthy volunteers. Monocyte migration capacity towards SDF1α was assessed. The GD patients exhibited reduced numbers of monocytes and decreased capability of SDF1α-dependent monocyte migration. Evaluation of CXCR4, the SDF1α receptor, revealed reduced expression of surface CXCR4 on GD-derived monocytes, despite similar CXCR4 mRNA transcript levels in the monocytes of healthy volunteers and GD patients. Reduction of surface CXCR4 was accompanied by increased intracellular CXCR4 levels in patient monocytes. This elevated intracellular CXCR4 might reflect significantly increased SDF1α concentrations characterizing patients' serum and the lysosomal impairment of GD, resulting in decreased degradation of CXCR4. Different distributions of CXCR4 expression observed in the two groups explain impaired SDF1α-dependent monocyte migration. Reduced numbers and impaired migration capacity of GD-derived monocytes could contribute to abnormal inflammation and GD-associated immune alterations seen in these patients.


Asunto(s)
Quimiotaxis de Leucocito/inmunología , Enfermedad de Gaucher/inmunología , Monocitos/inmunología , Antígenos de Superficie/metabolismo , Estudios de Casos y Controles , Quimiocina CXCL12/metabolismo , Enfermedad de Gaucher/sangre , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Expresión Génica , Humanos , Inmunofenotipificación , Recuento de Leucocitos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Monocitos/metabolismo , Unión Proteica , Transporte de Proteínas , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
4.
Clin Cancer Res ; 19(13): 3640-8, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23685836

RESUMEN

PURPOSE: A multiple myeloma vaccine has been developed whereby patient-derived tumor cells are fused with autologous dendritic cells, creating a hybridoma that stimulates a broad antitumor response. We report on the results of a phase II trial in which patients underwent vaccination following autologous stem cell transplantation (ASCT) to target minimal residual disease. EXPERIMENTAL DESIGN: Twenty-four patients received serial vaccinations with dendritic cell/myeloma fusion cells following posttransplant hematopoietic recovery. A second cohort of 12 patients received a pretransplant vaccine followed by posttransplant vaccinations. Dendritic cells generated from adherent mononuclear cells cultured with granulocyte macrophage colony-stimulating factor, interleukin-4, and TNF-α were fused with autologous bone marrow-derived myeloma fusion cells using polyethylene glycol. Fusion cells were quantified by determining the percentage of cells that coexpress dendritic cell and myeloma fusion antigens. RESULTS: The posttransplant period was associated with reduction in general measures of cellular immunity; however, an increase in CD4 and CD8(+) myeloma-specific T cells was observed after ASCT that was significantly expanded following posttransplant vaccination. Seventy-eight percent of patients achieved a best response of complete response (CR)+very good partial response (VGPR) and 47% achieved a CR/near CR (nCR). Remarkably, 24% of patients who achieved a partial response following transplant were converted to CR/nCR after vaccination and at more than 3 months posttransplant, consistent with a vaccine-mediated effect on residual disease. CONCLUSIONS: The posttransplant period for patients with multiple myeloma provides a unique platform for cellular immunotherapy in which vaccination with dendritic cell/myeloma fusion fusions resulted in the marked expansion of myeloma-specific T cells and cytoreduction of minimal residual disease.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Células Dendríticas/inmunología , Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple/inmunología , Mieloma Múltiple/terapia , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/efectos adversos , Femenino , Humanos , Inmunidad Celular , Inmunoterapia , Masculino , Persona de Mediana Edad , Inducción de Remisión , Trasplante Autólogo , Resultado del Tratamiento , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA