RESUMEN
Olefin polymerization using Ziegler-Natta catalysts (ZNCs) is an important industrial process. Despite this, fundamental insight into the inner working mechanisms of these catalysts remains scarce. Here, we focus on the low-γ nuclei 25Mg and 35Cl for an in-depth solid-state NMR and density functional theory (DFT) study of the catalyst's MgCl2 support in binary adducts prepared by ball-milling. Besides the bare MgCl2 support and a MgCl2-TiCl4 adduct, samples containing donors that are part of the families of 2,2-dialkyl-1,3-dimethoxypropanes and phthalates used in fourth- and fifth-generation ZNCs are studied. DFT calculations indicate that the quadrupolar coupling parameters of the chlorines differ significantly between bulk and surface sites. As a result, the NMR visibility of the chlorine sites correlates with the particle size except for the adduct with 2,2-dimethyl-1,3-dimethoxypropane donor. The DFT calculations furthermore show that the surface sites are fairly insensitive to binding of different donor molecules, making it difficult to identify specific binding motives. The surface sites with large 35Cl NMR line widths can be observed using high radio frequency field strengths. For the 2,2-dimethyl-1,3-dimethoxypropane donor, we observe additional surface sites with intermediately high quadrupolar couplings, suggesting a different surface structure for this particular adduct compared to the other systems. For 25Mg, pronounced effects of donor binding on the quadrupole interaction parameters are observed, both computationally and experimentally. Again the adduct with the 2,2-dimethyl-1,3-dimethoxypropane donor shows a different behavior of the surface sites compared to the other adducts, which display more asymmetric coordinations of the surface Mg sites. Identifying specific binding motives by comparing 25Mg NMR results to DFT calculations also proves to be difficult, however. This is attributed to the existence of many defect structures caused by the ball-milling process. The existence of such defect structures both at the surface and in the interior of the MgCl2 particles is corroborated by NMR relaxation studies. Finally, we performed heteronuclear correlation experiments, which reveal interactions between the support and Mg-OH surface groups, but do not provide indications for donor-surface interactions.
RESUMEN
The most commonly used cocatalyst species in Ziegler-Natta catalysts are aluminium alkyls. In this study we aim to find the interaction between aluminium centres of these activators and other components in the ZNC system. Initially we look at binary systems of Al-alkyl/MgCl2 and ternary systems of Al-alkyl/MgCl2/TiCl4, followed by donor containing systems. The aluminium alkyls prove to be very reactive species and only in the case of trimethylaluminium the alkyl is strongly present in the sample. This species appears to convert, however, over time. 1H NMR proves to be an efficient method to detect the presence of the Al-alkyl species. The use of high magnetic field strengths and 27Al MQMAS NMR alleviates signal overlap and gives insight in the dominant line broadening mechanisms thus providing an in-depth view of the cocatalyst. Various Al species with different coordinations can be identified in the samples. The heterogeneity of the samples turns out to have a larger effect on the 27Al NMR spectra than the quadrupolar interaction, which argues against the presence of highly distorted sites with mixed coordinations. Nevertheless for the samples indicating the presence of alkyls in the 1H NMR spectra, we observe an aluminium site at 97 ppm in the 27Al spectra that might be coordinated to an organic group.
RESUMEN
Ziegler-Natta catalysis is a very important industrial process for the production of polyolefins. However, the catalysts are not well-understood at the molecular level. Yet, atomic-scale structural information is of pivotal importance for rational catalyst development. We applied a solid-state NMR/density functional theory tandem approach to gain detailed insight into the interactions between the catalysts' support, MgCl2, and organic electron donors. Because of the heterogeneity of the samples, large line widths are observed in the carbon spectra. Despite this, good agreement between experimental and computational values was reached, and this shows that 1,3-diether based donors coordinate at (110) surface sites, while phthalates are less selective and coordinate at both (104) and (110) surface sites.
RESUMEN
In this contribution we used solid state 35Cl (I=3/2) quadrupolar NMR to study a MgCl2/2,2-dimethyl-1,3-dimethoxypropane (DMDOMe) adduct that serves as a model system for Ziegler-Natta catalysis. Employing large Radio-Frequency (RF) field strengths we observe three spectral features with strongly varying line widths. The assignment of the spectra is complicated because of the large difference in quadrupolar interactions experienced by the different sites in the system. The satellite transitions (ST) of relatively well-defined bulk Cl sites are partially excited and may overlap with the central transition (CT) resonances of more distorted surface sites. We show that nutation NMR of the ST of I=3/2 spins yields a unique pattern that makes a clear distinction between an extensively broadened central transition and the satellite transitions of a component with a smaller quadrupolar interaction. This allows us to unambiguously unravel the spectra of the MgCl2 adduct showing that we observe CT and ST of the bulk phase of MgCl2-nanoparticles with a CQ of 4.6MHz together with the CT of surface sites displaying an average CQ of â¼10MHz.
RESUMEN
Ziegler-Natta catalysts are the workhorses of polyolefin production. However, although they have been used and intensively studied for half a century, there is still no comprehensive picture of their mechanistic operation. New techniques are needed to gain more insight in these catalysts. Solid-state NMR has reached a high level of sophistication over the last few decades and holds great promise for providing a deeper insight in Ziegler-Natta catalysis. This review outlines the possibilities for solid-state NMR to characterize the different components and interactions in Ziegler-Natta and metallocene catalysts. An overview is given of some of the expected mechanisms and the resulting polymer microstructure and other characteristics. In the second part of this review we present studies that have used solid-state NMR to investigate the composition of Ziegler-Natta and metallocene catalysts or the interactions between their components.