Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Appl Spectrosc ; : 37028241268223, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39094013

RESUMEN

Carbon nanofibers are a new type of carbon materials. One of the methods of obtaining them is the carbonization of a polymer precursor. They are attractive in many areas, including medicine, due to the possibility of modifying their properties in a wide range. For example, the conditions of the carbonization process result in the creation of materials with designed structures and surface parameters. In the current work, the nanoprecursor was polyacrylonitrile (PAN) fibers. Two types of carbon fibers obtained by carbonization of the PAN precursor at 1000 °C were tested. The first electrospun carbon nanofibers (ESCNFs) were cytotoxic, while the second ESCNF-f were biocompatible after functionalization. The parameters obtained from Raman tests did not clearly discriminate between the tested materials. Multiwavelength Raman studies, analyzed using the two-dimensional correlation spectroscopy (2D-COS), treating the laser energy as an external disturbance, showed a difference between both fibrous structures. 2D-COS indicates that structures resembling graphite systems, devoid of disordered carbon forms, are nontoxic.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122306, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36603281

RESUMEN

The development of nanomaterials technology allows to design a novel medical strategies, and could also be useful in the field of regenerative medicine. The paper presents a study on the functionalized multi-walled carbon nanotubes (MWCNTs-f) layers deposited by electrophoretic method (EPD) on the surfaces of two types of substrates: titanium (Ti) and stainless steel. SEM and EDS analyses confirm that incubation in a simulated body fluid (SBF) caused a formation of hydroxyapatite on the surface of the Ti/MWCNTs-f. Raman micro-spectroscopy was a method of choice to study presented materials. The MWCNTs-f layer on the surface of the titanium plate shows better layer order than the corresponding layer deposited on the stainless steel. The structure and ordering of the nanocarbon layer play a key role in the biological activity of the materials. This was confirmed by the incubation of the plates with deposited layer of carbon nanotubes in SBF. A titanium substrate with a MWCNTs-f layer supports the deposition of some components from the environment, while a stainless steel substrate promotes the formation of a carbon film that inhibits the deposition of certain components from the environment. A two-trace two-dimensional (2T2D) analysis confirmed a different effect of SBF on the MWCNTs-f layer depending on the type of substrate. The MWCNTs-f layer on titanium substrate seems to represent an interesting proposition for novel bioactive strategies.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121862, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36122465

RESUMEN

In response to the growing need for development of modern biomaterials for applications in regenerative medicine strategies, the research presented here investigated the biological potential of two types of polymer nanocomposites. Graphene oxide (GO) and partially reduced graphene oxide (rGO) were incorporated into a poly(ε-caprolactone) (PCL) matrix, creating PCL/GO and PCL/rGO nanocomposites in the form of membranes. Proliferation of osteoblast-like cells (human U-2 OS cell line) on the surface of the studied materials confirmed their biological activity. Fluorescence microscopy was able to distinguish the different patterns of interaction between cells (depending on the type of material) after 15 days of the test run. Raman micro-spectroscopy and two-dimensional correlation spectroscopy (2D-COS) applied to Raman spectra distinguished the nature of cell-material interactions after only 8 days. Combination of these two techniques (Raman micro-spectroscopy and 2D-COS analysis) facilitated identification of a much more complex cellular response (especially from proteins) on the surface of PCL/GO. The presented approach can be regarded as a method for early study of the bioactivity of membrane materials.


Asunto(s)
Grafito , Humanos , Grafito/farmacología , Grafito/química , Poliésteres/química , Polímeros , Osteoblastos , Espectrometría Raman
4.
Int J Mol Sci ; 23(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35270038

RESUMEN

Nanocomposites developed based on siloxanes modified with carbon nanoforms are materials with great application potential in the electronics industry, medicine and environmental protection. This follows from the fact that such nanocomposites can be endowed with biocompatibility characteristics, electric conductivity and a high mechanical durability. Moreover, their surface, depending on the type and the amount of carbon nanoparticles, may exhibit antifouling properties, as well as those that limit bacterial adhesion. The paper reports on the properties of polysiloxane (PS) and carbon nanotubes (CNT) nanocomposite coatings on metal surfaces produced by the electrophoretic deposition (EPD). A comparison with coatings made of pure PS or pure CNT on the same substrates using the same deposition method (EPD) is provided. The coatings were examined for morphology and elemental composition (SEM, EDS), structural characteristics (confocal Raman spectroscopy), electrical conductivity and were tested for corrosion (electrochemical impedance spectroscopy-EIS, potentiodynamic polarization-PDP). The results obtained in this study clearly evidenced that such hybrid coatings conduct electricity and protect the metal from corrosion. However, their corrosion resistance differs slightly from that of a pure polymeric coating.


Asunto(s)
Nanotubos de Carbono , Materiales Biocompatibles Revestidos/química , Corrosión , Durapatita/química , Conductividad Eléctrica , Nanotubos de Carbono/química , Siloxanos
5.
Nanomaterials (Basel) ; 11(11)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34835654

RESUMEN

Poly(ε-caprolactone) (PCL) is a biocompatible resorbable material, but its use is limited due to the fact that it is characterized by the lack of cell adhesion to its surface. Various chemical and physical methods are described in the literature, as well as modifications with various nanoparticles aimed at giving it such surface properties that would positively affect cell adhesion. Nanomaterials, in the form of membranes, were obtained by the introduction of multi-walled carbon nanotubes (MWCNTs and functionalized nanotubes, MWCNTs-f) as well as electro-spun carbon nanofibers (ESCNFs, and functionalized nanofibers, ESCNFs-f) into a PCL matrix. Their properties were compared with that of reference, unmodified PCL membrane. Human osteoblast-like cell line, U-2 OS (expressing green fluorescent protein, GFP) was seeded on the evaluated nanomaterial membranes at relatively low confluency and cultured in the standard cell culture conditions. The attachment and the growth of the cell populations on the polymer and nanocomposite samples were monitored throughout the first week of culture with fluorescence microscopy. Simultaneously, Raman microspectroscopy was also used to track the dependence of U-2 OS cell development on the type of nanomaterial, and it has proven to be the best method for the early detection of nanomaterial/cell interactions. The differentiation of interactions depending on the type of nanoadditive is indicated by the ν(COC) vibration range, which indicates the interaction with PCL membranes with carbon nanotubes, while it is irrelevant for PCL with carbon nanofibers, for which no changes are observed. The vibration range ω(CH2) indicates the interaction for PCL with carbon nanofibers with seeded cells. The crystallinity of the area ν(C=O) increases for PCL/MWCNTs and for PCL/MWCNTs-f, while it decreases for PCL/ESCNFs and for PCL/ESCNFs-f with seeded cells. The crystallinity of the membranes, which is determined by Raman microspectroscopy, allows for the assessment of polymer structure changes and their degradability caused by the secretion of cell products into the ECM and the differentiation of interactions depending on the carbon nanostructure. The obtained nanocomposite membranes are promising bioactive materials.

6.
Mater Sci Eng C Mater Biol Appl ; 104: 109913, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31499964

RESUMEN

This study describes the preparation, and evaluates the biocompatibility, of hydroxylated multi-walled carbon nanotubes (fCNTs) functionalized with magnetic iron oxide nanoparticles (IONs) creating hybrid nanoparticles. These nanoparticles were used for preparing a composite porous poly(ε-caprolactone) scaffolds for potential utilization in regenerative medicine. Hybrid fCNT/ION nanoparticles were prepared in two mass ratios - 1:1 (H1) and 1:4 (H4). PCL scaffolds were prepared with various concentrations of the nanoparticles with fixed mass either of the whole nanoparticle hybrid or only of the fCNTs. The hybrid particles were evaluated in terms of morphology, composition and magnetic properties. The cytotoxicity of the hybrid nanoparticles and the pure fCNTs was assessed by exposing the SAOS-2 human cell line to colloids with a concentration range from 0.01 to 1 mg/ml. The results indicate a gradual increase in the cytotoxicity effect with increasing concentration. At low concentrations, interestingly, SAOS-2 metabolic activity was stimulated by the presence of IONs. The PCL scaffolds were characterized in terms of the scaffold architecture, the dispersion of the nanoparticles within the polymer matrix, and subsequently in terms of their thermal, mechanical and magnetic properties. A higher ION content was associated with the presence of larger agglomerates of particles. With exception of the scaffold with the highest content of the H4 nanoparticle hybrid, all composites were superparamagnetic. In vitro tests indicate that both components of the hybrid nanoparticles may have a positive impact on the behavior of SAOS-2 cells cultivated on the PCL composite scaffolds. The presence of fCNTs up to 1 wt% improved the cell attachment to the scaffolds, and a content of IONs below 1 wt% increased the cell metabolic activity.


Asunto(s)
Regeneración Ósea/fisiología , Compuestos Férricos/química , Nanotubos de Carbono/química , Poliésteres/química , Línea Celular Tumoral , Humanos , Fenómenos Magnéticos , Nanopartículas/química , Nanopartículas/ultraestructura , Nanotubos de Carbono/ultraestructura , Tamaño de la Partícula , Estrés Mecánico , Andamios del Tejido/química
7.
Biomed Res Int ; 2018: 2610637, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30417010

RESUMEN

The aim of this study was to evaluate a novel composite material for tracheal reconstruction in an ovine model. A polymer containing various forms of carbon fibers (roving, woven, and nonwoven fabric) impregnated with polysulfone (PSU) was used to create cylindrical tracheal implants, 3 cm in length and 2.5 cm in diameter. Each implant, reinforced with five rings made of PSU-impregnated carbon-fiber roving, had three external layers made of carbon-fiber woven fabric and the inner layer formed of carbon-fiber nonwoven fabric. The inner surface of five implants was additionally coated with polyurethane (PU), to promote migration of respiratory epithelium. The implants were used to repair tracheal defects (involving four tracheal rings) in 10 sheep (9-12 months of age; 40-50 kg body weight). Macroscopic and microscopic characteristics of the implants and tracheal anastomoses were examined 4 and 24 weeks after implantation. At the end of the follow-up period, outer surfaces of the implants were covered with the tissue which to various degree resembled histological structure of normal tracheal wall. In turn, inner surfaces of the prostheses were covered only with vascularized connective tissue. Inner polyurethane coating did not improve the outcomes of tracheal reconstruction and promoted excessive granulation, which contributed to moderate to severe stenosis at the tracheal anastomoses. The hereby presented preliminary findings constitute a valuable source of data for future research on a tracheal implant being optimally adjusted for medical needs.


Asunto(s)
Materiales Biocompatibles/química , Ovinos/cirugía , Tráquea/cirugía , Animales , Biomimética/métodos , Poliuretanos/química , Prótesis e Implantes , Procedimientos de Cirugía Plástica/métodos , Mucosa Respiratoria/cirugía
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 196: 262-267, 2018 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-29455077

RESUMEN

Adsorption or immobilization of proteins on synthetic surfaces is a key issue in the context of the biocompatibility of implant materials, especially those intended for the needs of cardiac surgery but also for the construction of biosensors or nanomaterials used as drug carriers. The subject of research was the analysis of Raman spectra of two types of fibrous carbon nanomaterials, of great potential for biomedical applications, incubated with human serum albumin (HSA). The first nanomaterial has been created on the layer of MWCNTs deposited by electrophoretic method (EPD) and then covered by thin film of pyrolytic carbon introduced by chemical vapor deposition process (CVD). The second material was formed from carbonized nanofibers prepared via electrospinning (ESCNFs) of polyacrylonitrile (PAN) precursor and then covered with pyrolytic carbon (CVD). The G-band blue-shift towards the position of about 1600cm-1, observed for both studied surfaces, clearly indicates the albumin (HSA) adhesion to the surface. The G and G' (2D) peak shift was employed to assess the stress build up on the carbon nanomaterials. The surface nano- and micro-topography as well as the method of ordering the carbon nanomaterial has a significant influence on the mode of surface-protein interaction.


Asunto(s)
Albúminas/química , Albúminas/metabolismo , Carbono/química , Carbono/metabolismo , Nanotubos de Carbono/química , Espectrometría Raman/métodos , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Humanos , Unión Proteica
9.
Carbohydr Polym ; 164: 170-178, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28325314

RESUMEN

The aim of this study was to determine which procedure for ß-1,3-glucan gelation - newly developed dialysis against calcium salt or described in the literature thermal technique - is more appropriate for fabrication of a biomaterial designed for bone tissue engineering applications. Thus, ß-1,3-glucan/hydroxyapatite scaffolds were prepared based on two different methods and their physicochemical, microstructural, and biological properties were compared. Obtained results demonstrated that unlike thermal method-prepared ß-1,3-glucan/hydroxyapatite material (glu/HAT), bone scaffold fabricated via dialysis method (glu/HA D) possessed rough surface resulting from the presence of CaCl2 precipitates as proven by SEM and EDS analysis. As a consequence, glu/HA D scaffold released Ca2+ ions to the surrounding environment positively affecting osteoblast behaviour and biomineralization in vitro. Since glu/HA D material exhibited better bioactivity and biocompatibility compared to the glu/HA T scaffold, it may be concluded that the dialysis method is more suitable for ß-1,3-glucan/hydroxyapatite biomaterial fabrication.

10.
Biomed Mater ; 11(4): 045001, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27388048

RESUMEN

Initial protein adsorption to the material surface is crucial for osteoblast adhesion, survival, and rapid proliferation resulting in intensive new bone formation. The aim of this study was to demonstrate that modification of a chitosan matrix of chitosan/hydroxyapatite (chit/HA) biomaterial for bone tissue engineering applications with linear ß-1,3-glucan (curdlan) leads to promotion of serum protein adsorption to the resultant scaffold (chit/glu/HA) and thus in enhancement of osteoblast adhesion, spreading and proliferation. Fabricated biomaterials were pre-adsorbed with different protein solutions and then protein adsorption and osteoblast behavior on the scaffolds were compared. Moreover, surface chemical composition, wettability and surface energy of biomaterials were compared. Modification of the chitosan matrix with ß-1,3-glucan introduces a greater polarpart in the resultant chitosan/ß-1,3-glucan matrix presumably resulting from more OH groups within the curdlan structure. Moreover, FTIR-ATR results suggest that there might be some sort of chemical interaction between the NH group of chitosan and the OH group of ß-1,3-glucan. As a consequence, the chit/glu/HA scaffold adsorbs significantly more adhesion proteins that are crucial for osteoblasts compared to the chit/HA material, providing a higher density culture of well-spread osteoblasts on its surface. Obtained results revealed that not only is chit/glu/HA biomaterial a promising scaffold for bone tissue engineering applications, but the specific polysaccharide chit/glu matrix itself is promising for use in the biomedical material field to modify various biomaterials in order to enhance osteoblast adhesion and proliferation on their surfaces.


Asunto(s)
Quitosano/química , Osteoblastos/citología , Osteoblastos/fisiología , Ingeniería de Tejidos , beta-Glucanos/química , Adsorción , Animales , Materiales Biocompatibles/química , Proteínas Sanguíneas/metabolismo , Bovinos , Adhesión Celular , Proliferación Celular , Células Cultivadas , Durapatita/química , Ratones , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA