Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 120, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29317621

RESUMEN

Transcript abundance and protein abundance show modest correlation in many biological models, but how this impacts disease signature discovery in omics experiments is rarely explored. Here we report an integrated omics approach, incorporating measurements of transcript abundance, protein abundance, and protein turnover to map the landscape of proteome remodeling in a mouse model of pathological cardiac hypertrophy. Analyzing the hypertrophy signatures that are reproducibly discovered from each omics data type across six genetic strains of mice, we find that the integration of transcript abundance, protein abundance, and protein turnover data leads to 75% gain in discovered disease gene candidates. Moreover, the inclusion of protein turnover measurements allows discovery of post-transcriptional regulations across diverse pathways, and implicates distinct disease proteins not found in steady-state transcript and protein abundance data. Our results suggest that multi-omics investigations of proteome dynamics provide important insights into disease pathogenesis in vivo.


Asunto(s)
Cardiomegalia/metabolismo , Miocardio/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Animales , Remodelación Atrial/genética , Cardiomegalia/genética , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Endogámicos , Miocardio/patología , Proteoma/genética , Transcriptoma , Remodelación Ventricular/genética
2.
Sci Data ; 3: 160015, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26977904

RESUMEN

Protein stability is a major regulatory principle of protein function and cellular homeostasis. Despite limited understanding on mechanisms, disruption of protein turnover is widely implicated in diverse pathologies from heart failure to neurodegenerations. Information on global protein dynamics therefore has the potential to expand the depth and scope of disease phenotyping and therapeutic strategies. Using an integrated platform of metabolic labeling, high-resolution mass spectrometry and computational analysis, we report here a comprehensive dataset of the in vivo half-life of 3,228 and the expression of 8,064 cardiac proteins, quantified under healthy and hypertrophic conditions across six mouse genetic strains commonly employed in biomedical research. We anticipate these data will aid in understanding key mitochondrial and metabolic pathways in heart diseases, and further serve as a reference for methodology development in dynamics studies in multiple organ systems.


Asunto(s)
Proteínas Musculares/metabolismo , Miocardio/metabolismo , Proteómica , Animales , Cardiomegalia/metabolismo , Metabolismo Energético , Mamíferos , Ratones , Mitocondrias Cardíacas/metabolismo , Miocardio/patología , Miocardio/ultraestructura , Especificidad de la Especie
3.
Proteomics Clin Appl ; 8(7-8): 610-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24946186

RESUMEN

PURPOSE: High-throughput quantification of human protein turnover via in vivo administration of deuterium oxide ((2) H2 O) is a powerful new approach to examine potential disease mechanisms. Its immediate clinical translation is contingent upon characterizations of the safety and hemodynamic effects of in vivo administration of (2) H2 O to human subjects. EXPERIMENTAL DESIGN: We recruited ten healthy human subjects with a broad demographic variety to evaluate the safety, feasibility, efficacy, and reproducibility of (2) H2 O intake for studying protein dynamics. We designed a protocol where each subject orally consumed weight-adjusted doses of 70% (2) H2 O daily for 14 days to enrich body water and proteins with deuterium. Plasma proteome dynamics was measured using a high-resolution MS method we recently developed. RESULTS: This protocol was successfully applied in ten human subjects to characterize the endogenous turnover rates of 542 human plasma proteins, the largest such human dataset to-date. Throughout the study, we did not detect physiological effects or signs of discomfort from (2) H2 O consumption. CONCLUSIONS AND CLINICAL RELEVANCE: Our investigation supports the utility of a (2) H2 O intake protocol that is safe, accessible, and effective for clinical investigations of large-scale human protein turnover dynamics. This workflow shows promising clinical translational value for examining plasma protein dynamics in human diseases.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Óxido de Deuterio/metabolismo , Proteómica/métodos , Adulto , Óxido de Deuterio/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
4.
J Clin Invest ; 124(4): 1734-44, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24614109

RESUMEN

Protein temporal dynamics play a critical role in time-dimensional pathophysiological processes, including the gradual cardiac remodeling that occurs in early-stage heart failure. Methods for quantitative assessments of protein kinetics are lacking, and despite knowledge gained from single-protein studies, integrative views of the coordinated behavior of multiple proteins in cardiac remodeling are scarce. Here, we developed a workflow that integrates deuterium oxide (2H2O) labeling, high-resolution mass spectrometry (MS), and custom computational methods to systematically interrogate in vivo protein turnover. Using this workflow, we characterized the in vivo turnover kinetics of 2,964 proteins in a mouse model of ß-adrenergic-induced cardiac remodeling. The data provided a quantitative and longitudinal view of cardiac remodeling at the molecular level, revealing widespread kinetic regulations in calcium signaling, metabolism, proteostasis, and mitochondrial dynamics. We translated the workflow to human studies, creating a reference dataset of 496 plasma protein turnover rates from 4 healthy adults. The approach is applicable to short, minimal label enrichment and can be performed on as little as a single biopsy, thereby overcoming critical obstacles to clinical investigations. The protein turnover quantitation experiments and computational workflow described here should be widely applicable to large-scale biomolecular investigations of human disease mechanisms with a temporal perspective.


Asunto(s)
Corazón/efectos de los fármacos , Isoproterenol/farmacología , Miocardio/metabolismo , Proteínas/metabolismo , Agonistas Adrenérgicos beta/farmacología , Adulto , Animales , Señalización del Calcio , Óxido de Deuterio , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Humanos , Cinética , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos ICR , Mitocondrias Cardíacas/metabolismo , Proteínas Musculares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA