Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Sci Rep ; 14(1): 10252, 2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704459

RESUMEN

About one in three critically ill patients requires mechanical ventilation (MV). Prolonged MV, however, results in diaphragmatic weakness, which itself is associated with delayed weaning and increased mortality. Inducing active diaphragmatic contraction via electrical phrenic nerve stimulation (PNS) not only provides the potential to reduce diaphragmatic muscular atrophy but also generates physiological-like ventilation and therefore offers a promising alternative to MV. Reasons why PNS is not yet used in critical care medicine are high procedural invasiveness, insufficient evidence, and lack of side-by-side comparison to MV. This study aims to establish a minimal-invasive percutaneous, bilateral electrode placement approach for sole PNS breathing and thereby enable, for the first time, a breath-by-breath comparison to MV. Six juvenile German Landrace pigs received general anesthesia and orotracheal intubation. Following the novel ultrasound-guided, landmark-based, 4-step approach, two echogenic needles per phrenic nerve were successfully placed. Stimulation effectiveness was evaluated measuring tidal volume, diaphragmatic thickening and tomographic electrical impedance in a breath-by-breath comparison to MV. Following sufficient bilateral phrenic nerve stimulation in all pigs, PNS breaths showed a 2.2-fold increase in diaphragmatic thickening. It induced tidal volumes in the lung-protective range by negative pressure inspiration and improved dorso-caudal regional ventilation in contrast to MV. Our study demonstrated the feasibility of a novel ultrasound-guided, percutaneous phrenic nerve stimulation approach, which generated sufficient tidal volumes and showed more resemblance to physiological breathing than MV in a breath-by-breath comparison.


Asunto(s)
Diafragma , Nervio Frénico , Respiración Artificial , Animales , Nervio Frénico/fisiología , Respiración Artificial/métodos , Porcinos , Proyectos Piloto , Diafragma/inervación , Diafragma/fisiología , Volumen de Ventilación Pulmonar , Terapia por Estimulación Eléctrica/métodos , Estimulación Eléctrica Transcutánea del Nervio/métodos , Estimulación Eléctrica/métodos
2.
Biomedicines ; 12(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38672230

RESUMEN

BACKGROUND: Previous studies have shown cardiac abnormalities in acute liver injury, suggesting a potential role in the associated high mortality. METHODS: We designed an experimental study exploring the short-term effects of acute cholestasis-induced liver injury on cardiac function and structure in a rodent bile duct ligation (BDL) model to elucidate the potential interplay. Thirty-seven male Sprague-Dawley rats were subjected to BDL surgery (n = 28) or served as sham-operated (n = 9) controls. Transthoracic echocardiography, Doppler evaluation of the left anterior descending coronary artery, and myocardial contrast echocardiography were performed at rest and during adenosine and dobutamine stress 5 days after BDL. Immunohistochemical staining of myocardial tissue samples for hypoxia and inflammation as well as serum analysis were performed. RESULTS: BDL animals exhibited acute liver injury with elevated transaminases, bilirubin, and total circulating bile acids (TBA) 5 days after BDL (TBA control: 0.81 ± 2.54 µmol/L vs. BDL: 127.52 ± 57.03 µmol/L; p < 0.001). Concurrently, cardiac function was significantly impaired, characterized by reduced cardiac output (CO) and global longitudinal strain (GLS) in the echocardiography at rest and under pharmacological stress (CO rest control: 120.6 ± 24.3 mL/min vs. BDL 102.5 ± 16.6 mL/min, p = 0.041; GLS rest control: -24.05 ± 3.8% vs. BDL: -18.5 ± 5.1%, p = 0.01). Myocardial perfusion analysis revealed a reduced myocardial blood flow at rest and a decreased coronary flow velocity reserve (CFVR) under dobutamine stress in the BDL animals (CFVR control: 2.1 ± 0.6 vs. BDL: 1.7 ± 0.5 p = 0.047). Immunofluorescence staining indicated myocardial hypoxia and increased neutrophil infiltration. CONCLUSIONS: In summary, acute cholestasis-induced liver injury can lead to impaired cardiac function mediated by coronary microvascular dysfunction, suggesting that major adverse cardiac events may contribute to the mortality of acute liver failure. This may be due to endothelial dysfunction and direct bile acid signaling.

3.
Biosensors (Basel) ; 13(12)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38131772

RESUMEN

The occurrence of thrombus formation within an extracorporeal membrane oxygenator is a common complication during extracorporeal membrane oxygenation therapy and can rapidly result in a life-threatening situation due to arterial thromboembolism, causing stroke, pulmonary embolism, and limb ischemia in the patient. The standard clinical practice is to monitor the pressure at the inlet and outlet of oxygenators, indicating fulminant, obstructive clot formation indicated by an increasing pressure difference (ΔP). However, smaller blood clots at early stages are not detectable. Therefore, there is an unmet need for sensors that can detect blood clots at an early stage to minimize the associated thromboembolic risks for patients. This study aimed to evaluate if forward scattered light (FSL) measurements can be used for early blood clot detection and if it is superior to the current clinical gold standard (pressure measurements). A miniaturized in vitro test circuit, including a custom-made test chamber, was used. Heparinized human whole blood was circulated through the test circuit until clot formation occurred. Four LEDs and four photodiodes were placed along the sidewall of the test chamber in different positions for FSL measurements. The pressure monitor was connected to the inlet and the outlet to detect changes in ΔP across the test chamber. Despite several modifications in the LED positions on the test chamber, the FSL measurements could not reliably detect a blood clot within the in vitro test circuit, although the pressure measurements used as the current clinical gold standard detected fulminant clot formation in 11 independent experiments.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Trombosis , Humanos , Trombosis/diagnóstico , Trombosis/etiología , Oxigenadores de Membrana/efectos adversos , Oxigenación por Membrana Extracorpórea/efectos adversos , Diagnóstico Precoz
4.
Animals (Basel) ; 13(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38003149

RESUMEN

The development of biomedical soft- or hardware frequently includes testing in animals. However, large efforts have been made to reduce the number of animal experiments, according to the 3Rs principle. Simultaneously, a significant number of surplus animals are euthanized without scientific necessity. The primary aim of this study was to establish a post-mortem rat perfusion model using extracorporeal membrane oxygenation (ECMO) in surplus rat cadavers and generate first post vivo results concerning the oxygenation performance of a recently developed ECMO membrane oxygenator. Four rats were euthanized and connected post-mortem to a venous-arterial ECMO circulation for up to eight hours. Angiographic perfusion proofs, blood gas analyses and blood oxygenation calculations were performed. The mean preparation time for the ECMO system was 791 ± 29 s and sufficient organ perfusion could be maintained for 463 ± 26 min, proofed via angiographic imaging and a mean femoral arterial pressure of 43 ± 17 mmHg. A stable partial oxygen pressure, a 73% rise in arterial oxygen concentration and an exponentially increasing oxygen extraction ratio up to 4.75 times were shown. Considering the 3Rs, the established post-mortal ECMO perfusion rat model using surplus animals represents a promising alternative to models using live animals. Given the preserved organ perfusion, its use could be conceivable for various biomedical device testing.

5.
Antioxidants (Basel) ; 12(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36979015

RESUMEN

Donor organ-shortage has resulted in the increased use of marginal grafts; however, normothermic machine perfusion (NMP) holds the potential for organ viability assessment and restoration of marginal grafts prior to transplantation. Additionally, cell-, oxygen carrier-free and antioxidants-supplemented solutions could potentially prevent adverse effects (transfusion reactions, inflammation, hemolysis), associated with the use of autologous packed red blood cell (pRBC)-based perfusates. This study compared 6 h NMP of porcine kidneys, using an established pRBC-based perfusate (pRBC, n = 7), with the novel cell- and oxygen carrier-free organ preservation solution Ecosol, containing taurine (Ecosol, n = 7). Despite the enhanced tissue edema and tubular injury in the Ecosol group, related to a suboptimal molecular mass of polyethylene glycol as colloid present in the solution, functional parameters (renal blood flow, intrarenal resistance, urinary flow, pH) and oxygenation (arterial pO2, absence of hypoxia-inducible factor 1-alpha) were similar to the pRBC group. Furthermore, taurine significantly improved the antioxidant capacity in the Ecosol group, reflected in decreased lactate dehydrogenase, urine protein and tubular vacuolization compared to pRBC. This study demonstrates the feasibility of 6 h NMP using a taurine containing, cell- and oxygen carrier-free perfusate, achieving a comparable organ quality to pRBC perfused porcine kidneys.

6.
Biosensors (Basel) ; 13(3)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36979606

RESUMEN

Clot formation inside a membrane oxygenator (MO) due to blood-to-foreign surface interaction represents a frequent complication during extracorporeal membrane oxygenation. Since current standard monitoring methods of coagulation status inside the MO fail to detect clot formation at an early stage, reliable sensors for early clot detection are in demand to reduce associated complications and adverse events. Bioimpedance analysis offers a monitoring concept by integrating sensor fibers into the MO. Herein, the feasibility of clot detection via bioimpedance analysis is evaluated. A custom-made test chamber with integrated titanium fibers acting as sensors was perfused with heparinized human whole blood in an in vitro test circuit until clot formation occurred. The clot detection capability of bioimpedance analysis was directly compared to the pressure difference across the test chamber (ΔP-TC), analogous to the measurement across MOs (ΔP-MO), the clinical gold standard for clot detection. We found that bioimpedance measurement increased significantly 8 min prior to a significant increase in ΔP-TC, indicating fulminant clot formation. Experiments without clot formation resulted in a lack of increase in bioimpedance or ΔP-TC. This study shows that clot detection via bioimpedance analysis under flow conditions in a blood-perfused test chamber is generally feasible, thus paving the way for further investigation.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Trombosis , Humanos , Trombosis/diagnóstico , Trombosis/etiología , Oxigenadores de Membrana/efectos adversos , Oxigenación por Membrana Extracorpórea/efectos adversos , Oxigenación por Membrana Extracorpórea/métodos , Coagulación Sanguínea , Presión
7.
Small ; 19(14): e2205185, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36635040

RESUMEN

Nitric oxide (NO) plays a significant role in controlling the physiology and pathophysiology of the body, including the endothelial antiplatelet function and therefore, antithrombogenic property of the blood vessels. This property of NO can be exploited to prevent thrombus formation on artificial surfaces like extracorporeal membrane oxygenators, which when come into contact with blood lead to protein adsorption and thereby platelet activation causing thrombus formation. However, NO is extremely reactive and has a very short biological half-life in blood, so only endogenous generation of NO from the blood contacting material can result into a stable and kinetically controllable local delivery of NO. In this regards, highly hydrophilic bioactive nanogels are presented which can endogenously generate NO in blood plasma from endogenous NO-donors thereby maintaining a physiological NO flux. It is shown that NO releasing nanogels could initiate cGMP-dependent protein kinase signaling followed by phosphorylation of vasodilator-stimulated phosphoprotein in platelets. This prevents platelet activation and aggregation even in presence of highly potent platelet activators like thrombin, adenosine 5'-diphosphate, and U46619 (thromboxane A2 mimetic).


Asunto(s)
Óxido Nítrico , Trombosis , Humanos , Óxido Nítrico/metabolismo , Nanogeles , GMP Cíclico/metabolismo , Plaquetas/metabolismo , Endotelio/metabolismo
8.
Lab Anim ; 57(2): 160-169, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36221253

RESUMEN

Article 23(2) of EU Directive 2010/63 on the protection of animals used for scientific purposes requires staff involved in the care and use of animals to be adequately educated and trained before carrying out procedures. Therefore, the 3Rs (refinement, reduction, and replacement) and knowledge of alternative methods should be part of the education and training itself. For this purpose, the digital learning concept "Virtual Reality (VR) in Biomedical Education" evolved, which successfully combines VR components with classical learning content. Procedures, such as anesthesia induction, substance application, and blood sampling in rats, as well as aspects of the laboratory environment were recorded in 360° videos. The generated VR teaching/learning modules (VR modules) were used to better prepare participants for hands-on training (refinement) or as a complete replacement for a live demonstration; thus, reducing the number of animals used for hands-on skills training (reduction). The current study evaluated users' experience of the VR modules. Despite little previous VR experience, participants strongly appreciated the VR modules and indicated that they believed VR has the potential to enhance delivery of procedures and demonstrations. Interestingly, participants with previous experience of laboratory animal science were more convinced about VR's potential to support the 3Rs principle, and endorsed its use for further educational purposes. In conclusion, VR appeared to be highly accepted as a learning/teaching method, indicating its great potential to further replace and reduce the use of animals in experimental animal courses.


Asunto(s)
Ciencia de los Animales de Laboratorio , Realidad Virtual , Animales , Ciencia de los Animales de Laboratorio/educación
9.
Antioxidants (Basel) ; 11(7)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35883821

RESUMEN

Normothermic machine perfusion (NMP) of kidneys in combination with an optimized perfusate composition may increase donor organ preservation quality, especially in the case of marginal donor grafts. Optimization of currently employed perfusates is still a subject of present research. Due to the advantages of being cell-free, easy to store, and having minimal antigenicity, hemoglobin-based oxygen carriers, such as HBOC-301 (Oxyglobin®, Hemoglobin Oxygen Therapeutics LLC, Souderton, PA, USA), offer an alternative to the commonly used perfusates based on packed red blood cells (pRBC). As previously described, using HBOC results in formation of methemoglobin (metHb) as an adverse effect, inducing hypoxic conditions during the perfusion. As a potential counterpart to metHb formation, the application of the antioxidant ascorbic acid (VitC) is of high interest. Therefore, this study was conducted in four experimental groups, to compare the effect of NMP with (1) HBOC or (3) pRBC, and additionally examine a beneficial effect of VitC in both groups (2) HBOC + VitC and (4) pRBC + VitC. All groups were subjected to NMP for 6 h at a pressure of 75 mmHg. Kidneys in the HBOC groups had a significantly lower renal blood flow and increasing intrarenal resistance, with reduced renal function in comparison to the pRBC groups, as demonstrated by significantly lower creatinine clearance and higher fractional sodium excretion rates. Clinical chemistry markers for tissue damage (LDH, lactate) were higher in the HBOC groups, whereas no significant histological differences were observed. Although the application of VitC decreased oxidative stress levels, it was not able to significantly increase the outcome parameters mentioned above in either group. This study demonstrated that HBOC-301 is inferior to pRBCs in our porcine kidney NMP model, independent of additional VitC administration. Oxidative stress and fragmentation of the hemoglobin polymers could be detected as a possible reason for these results, hence further research, focusing on the use of cell-free oxygen carriers that do not exhibit this complex of issues, is required.

10.
J Clin Med ; 11(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35743501

RESUMEN

BACKGROUND: Hemocompatibility of left ventricular assist devices is essential for preventing adverse events. In this study, we compared the hemocompatibility of an axial-flow (Sputnik) to a centrifugal-flow (HeartMate 3) pump. METHODS: Both pumps were integrated into identical in vitro test circuits, each filled with 75 mL heparinized human blood of the same donor. During each experiment (n = 7), the pumps were operated with equal flow for six hours. Blood sampling and analysis were performed on a regular schedule. The analytes were indicators of hemolysis, coagulation activation, platelet count and activation, as well as extracellular vesicles. RESULTS: Sputnik induced higher hemolysis compared to the HeartMate 3 after 360 min. Furthermore, platelet activation was higher for Sputnik after 120 min onward. In the HeartMate 3 circuit, the platelet count was reduced within the first hour. Furthermore, Sputnik triggered a more pronounced increase in extracellular vesicles, a potential trigger for adverse events in left ventricular assist device application. Activation of coagulation showed a time-dependent increase, with no differences between both groups. CONCLUSIONS: This experimental study confirms the hypothesis that axial-flow pumps may induce stronger hemolysis compared to centrifugal pumps, coming along with larger amounts of circulating extracellular vesicles and a stronger PLT activation.

11.
Membranes (Basel) ; 12(1)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35054599

RESUMEN

BACKGROUND: Clot formation on foreign surfaces of extracorporeal membrane oxygenation systems is a frequent event. Herein, we show an approach that mimics the enzymatic process of endogenous nitric oxide (NO) release on the oxygenator membrane via a biomimetic, non-fouling microgel coating to spatiotemporally inhibit the platelet (PLT) activation and improve antithrombotic properties. This study aims to evaluate the potential of this biomimetic coating towards NO-mediated PLT inhibition and thereby the reduction of clot formation under flow conditions. METHODS: Microgel-coated (NOrel) or bare (Control) poly(4-methyl pentene) (PMP) fibers were inserted into a test channel and exposed to a short-term continuous flow of human blood. The analysis included high-resolution PLT count, pooled PLT activation via ß-Thromboglobulin (ß-TG) and the visualization of remnants and clots on the fibers using scanning electron microscopy (SEM). RESULTS: In the Control group, PLT count was significantly decreased, and ß-TG concentration was significantly elevated in comparison to the NOrel group. Macroscopic and microscopic visualization showed dense layers of stable clots on the bare PMP fibers, in contrast to minimal deposition of fibrin networks on the coated fibers. CONCLUSION: Endogenously NO-releasing microgel coating inhibits the PLT activation and reduces the clot formation on PMP fibers under dynamic flow.

12.
Perfusion ; 37(2): 134-143, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33475044

RESUMEN

INTRODUCTION: Due to improved technology and increased application the mortality during extracorporeal membrane oxygenation (ECMO) is constantly declining. Nevertheless, complications including haemorrhage or thrombus formation remain frequent. Local mitigation of coagulation within an ECMO system to prevent thrombus formation on ECMO components and optimizing systemic anticoagulation is an approach to reduce clotting and bleeding complications at once. Foreign surfaces of ECMO systems, activate platelets (PLTs), which besides their major role in coagulation, can trigger the formation of neutrophil extracellular traps (NETs) contributing to robust thrombus formation. The impact of a reduced PLT count on PLT activation and NET formation is of paramount importance and worth investigating. METHODS: In this study platelet poor (PLT-) and native (PLT+) heparinized human blood was circulated in two identical in vitro test circuits for ECMO devices for 6 hours. PLT reduction was achieved by a centrifugation protocol prior to the experiments. To achieve native coagulation characteristics within the test circuits, the initial heparin dose was antagonized by continuous protamine administration. RESULTS: The PLT- group showed significantly lower platelet activation, basal NET formation and limited clot stability measured via thromboelastometry. Fluorescent and scanning electron microscope imaging showed differences in clot composition. Both groups showed equal clot formation within the circuit. CONCLUSIONS: This study demonstrated that the reduction of PLTs within an ECMO system is associated with limited PLT activation and NET formation, which reduces clot stability but is not sufficient to inhibit clot formation per se.


Asunto(s)
Trampas Extracelulares , Trombosis , Coagulación Sanguínea/fisiología , Humanos , Activación Plaquetaria , Recuento de Plaquetas
13.
Curr Issues Mol Biol ; 43(3): 1997-2010, 2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34889902

RESUMEN

BACKGROUND: Anesthetic-induced preconditioning (AIP) with volatile anesthetics is a well-known experimental technique to protect tissues from ischemic injury or oxidative stress. Additionally, plasmatic extracellular vesicle (EV) populations and their cargo are known to be affected by AIP in vitro, and to provide organ protective properties via their cargo. We investigated whether AIP would affect the generation of EVs in an in vivo rat model. METHODS: Twenty male Sprague Dawley rats received a repetitive treatment with either isoflurane or with sevoflurane for a duration of 4 or 8 weeks. EVs from blood plasma were characterized by nanoparticle tracking analysis, transmission electron microscopy (TEM) and Western blot. A scratch assay (H9C2 cardiomyoblast cell line) was performed to investigate the protective capabilities of the isolated EVs. RESULTS: TEM images as well as Western blot analysis indicated that EVs were successfully isolated. The AIP changed the flotillin and CD63 expression on the EV surface, but not the EV concentration. The scratch assay did not show increased cell migration and/or proliferation after EV treatment. CONCLUSION: AIP in rats changed the cargo of EVs but had no effect on EV concentration or cell migration/proliferation. Future studies are needed to investigate the cargo on a miRNA level and to investigate the properties of these EVs in additional functional experiments.


Asunto(s)
Anestésicos/administración & dosificación , Anestésicos/farmacocinética , Vesículas Extracelulares/metabolismo , Animales , Biomarcadores , Línea Celular , Vesículas Extracelulares/ultraestructura , Isquemia/etiología , Isquemia/metabolismo , Isquemia/patología , Isquemia/prevención & control , Precondicionamiento Isquémico , Masculino , Nanopartículas , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Ratas
14.
Biomater Sci ; 10(1): 85-99, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34812809

RESUMEN

Neutrophil extracellular traps (NETs) are web-like chromatin structures produced and liberated by neutrophils under inflammatory conditions which also promote the activation of the coagulation cascade and thrombus formation. The formation of NETs is quite prominent when blood comes in contact with artificial surfaces like extracorporeal circuits, oxygenator membranes, or intravascular grafts. DNase I as a factor of the host defense system, digests the DNA backbone of NETs, which points out its treatment potential for NET-mediated thrombosis. However, the low serum stability of DNase I restricts its clinical/therapeutic applications. To improve the bioavailability of the enzyme, DNase I was conjugated to the microgels (DNase I MG) synthesized from highly hydrophilic N-(2-hydroxypropyl) methacrylamide (HPMA) and zwitterionic carboxybetaine methacrylamide (CBMAA). The enzyme was successfully conjugated to the microgels without any alternation to its secondary structure. The Km value representing the enzymatic activity of the conjugated DNase I was calculated to be 0.063 µM demonstrating a high enzyme-substrate affinity. The DNase I MGs were protein repellant and were able to digest NETs more efficiently compared to free DNase in a biological media, remarkably even after long-term exposure to the stimulated neutrophils continuously releasing NETs. Overall, the conjugation of DNase I to a non-fouling microgel provides a novel biohybrid platform that can be exploited as non-thrombogenic active microgel-based coatings for blood-contacting surfaces to reduce the NET-mediated inflammation and microthrombi formation.


Asunto(s)
Trampas Extracelulares , Microgeles , Trombosis , Desoxirribonucleasa I , Humanos , Neutrófilos
15.
J Colloid Interface Sci ; 601: 604-616, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34116469

RESUMEN

Nitric oxide (NO) continuously generated by healthy endothelium prevents platelet activation and maintains vascular homeostasis. However, when artificial surfaces, like of extracorporeal membrane oxygenator comes in contact with blood, protein adsorption and thereby platelet activation takes place, which eventually leads to thrombus formation. To overcome this, we present an antifouling microgel coating mimicking the function of enzyme glutathione peroxidase to endogenously generate NO in the blood plasma from endogenous NO-donors and maintain a physiological NO flux. Microgels are synthesized by copolymerization of highly hydrophilic N-(2-hydroxypropyl)methacrylamide (HPMA) and glycidyl methacrylate (GMA) with diselenide crosslinks. For immobilization of the microgels on hydrophobic poly(4-methylpentene) (TPX) membranes bioengineered amphiphilic anchor peptides with free thiols are used. The anchor peptide attaches to the TPX membranes by hydrophobic interactions while the free thiols are presented for crosslinking with the microgels. The hydrophilic nature of the microgel coating prevents protein adsorption while the reversible diselenide bridges make the microgels responsive to the reducing environment and lead to the formation of reactive selenols/selenolates. The generated selenols/selenolates provide an efficient and sustained NO-release from endogenous S-nitrosothiols (RSNOs) mimicking the enzymatic function of glutathione peroxidase. On exposure to the whole blood, the microgel coating inhibited platelet activation and prolonged the blood clotting time.


Asunto(s)
Microgeles , Adsorción , Humanos , Óxido Nítrico , Activación Plaquetaria , Polimerizacion
16.
Diagnostics (Basel) ; 11(2)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671433

RESUMEN

Mortality in critically ill coronavirus disease 2019 (COVID-19) patients is high and pharmacological treatment strategies remain limited. Early-stage predictive biomarkers are needed to identify patients with a high risk of severe clinical courses and to stratify treatment strategies. Macrophage migration inhibitory factor (MIF) was previously described as a potential predictor for the outcome of critically ill patients and for acute respiratory distress syndrome (ARDS), a hallmark of severe COVID-19 disease. This prospective observational study evaluates the predictive potential of MIF for the clinical outcome after severe COVID-19 infection. Plasma MIF concentrations were measured in 36 mechanically ventilated COVID-19 patients over three days after intensive care unit (ICU) admission. Increased compared to decreased MIF was significantly associated with aggravated organ function and a significantly lower 28-day survival (sequential organ failure assessment (SOFA) score; 8.2 ± 4.5 to 14.3 ± 3, p = 0.009 vs. 8.9 ± 1.9 to 12 ± 2, p = 0.296; survival: 56% vs. 93%; p = 0.003). Arterial hypertension was the predominant comorbidity in 85% of patients with increasing MIF concentrations (vs. decreasing MIF: 39%; p = 0.015). Without reaching significance, more patients with decreasing MIF were able to improve their ARDS status (p = 0.142). The identified association between an early MIF response, aggravation of organ function and 28-day survival may open future perspectives for biomarker-based diagnostic approaches for ICU management of COVID-19 patients.

17.
Sci Rep ; 9(1): 13897, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554887

RESUMEN

Normothermic machine perfusion (NMP) of kidney grafts is a promising new preservation method to improve graft quality and clinical outcome. Routinely, kidneys are washed out of blood remnants and cooled using organ preservation solutions prior to NMP. Here we assessed the effect of cold preflush compared to direct NMP. After 30 min of warm ischemia, porcine kidneys were either preflushed with cold histidine-tryptophan-ketoglutarate solution (PFNMP group) prior to NMP or directly subjected to NMP (DNMP group) using a blood/buffer solution. NMP was performed at a perfusion pressure of 75 mmHg for 6 h. Functional parameters were assessed as well as histopathological and biochemical analyses. Renal function as expressed by creatinine clearance, fractional excretion of sodium and total output of urine was inferior in PFNMP. Urine protein and neutrophil gelatinase-associated lipocalin (NGAL) concentrations as markers for kidney damage were significantly higher in the PFNMP group. Additionally, increased osmotic nephropathy was found after PFNMP. This study demonstrated that cold preflush prior to NMP aggravates ischemia reperfusion injury in comparison to direct NMP of warm ischemia-damaged kidney grafts. With increasing use of NMP systems for kidneys and other organs, further research into graft flushing during retrieval is warranted.


Asunto(s)
Riñón/metabolismo , Soluciones Preservantes de Órganos/metabolismo , Daño por Reperfusión/metabolismo , Animales , Femenino , Glucosa/metabolismo , Trasplante de Riñón/métodos , Lipocalina 2/metabolismo , Manitol/metabolismo , Modelos Animales , Preservación de Órganos/métodos , Perfusión/métodos , Cloruro de Potasio/metabolismo , Procaína/metabolismo , Porcinos , Isquemia Tibia/métodos
18.
Nutrients ; 11(8)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374900

RESUMEN

Systemic and localized ischemia and reperfusion injury remain clinically relevant issues after organ transplantation and contribute to organ dysfunctions, among which acute kidney injury is one of the most common. An in vitro test-circuit for normothermic perfusion of porcine kidneys after warm ischemia was used to investigate the antioxidant properties of vitamin C during reperfusion. Vitamin C is known to enhance microcirculation, reduce endothelial permeability, prevent apoptosis, and reduce inflammatory reactions. Based on current evidence about the pleiotropic effects of vitamin C, we hypothesize that the antioxidant properties of vitamin C might provide organ-protection and improve the kidney graft function in this model of ischemia and reperfusion. METHODS: 10 porcine kidneys from 5 Landrace pigs were perfused in vitro for 6 h. For each experiment, both kidneys of one animal were perfused simultaneously with a 1:1 mixture of autologous blood and modified Ringer's solution at 38 °C and 75 mmHg continuous perfusion pressure. One kidney was treated with a 500 mg bolus injection of vitamin C into the perfusate, followed by continuous infusion of 60 mg/h vitamin C. In the control test circuit, an equal volume of Ringer's solution was administered as a placebo. Perfusate samples were withdrawn at distinct points in time during 6 h of perfusion for blood gas analyses as well as measurement of serum chemistry, oxidative stress and antioxidant capacity. Hemodynamic parameters and urine excretion were monitored continuously. Histological samples were analyzed to detect tubular- and glomerular-injury. RESULTS: vitamin C administration to the perfusate significantly reduced oxidative stress (49.8 ± 16.2 vs. 118.6 ± 23.1 mV; p = 0.002) after 6 h perfusion, and increased the antioxidant capacity, leading to red blood cell protection and increased hemoglobin concentrations (5.1 ± 0.2 vs. 3.9 ± 0.6 g/dL; p = 0.02) in contrast to placebo treatment. Kidney function was not different between the groups (creatinine clearance vit C: 2.5 ± 2.1 vs. placebo: 0.5 ± 0.2 mL/min/100 g; p = 0.9). Hypernatremia (187.8 ± 4.7 vs. 176.4 ± 5.7 mmol/L; p = 0.03), and a lower, but not significant decreased fractional sodium excretion (7.9 ± 2 vs. 27.7 ± 15.3%; p = 0.2) were observed in the vitamin C group. Histological analysis did not show differences in tubular- and glomerular injury between the groups. CONCLUSION: Vitamin C treatment increased the antioxidant capacity of in vitro perfused kidney grafts, reduced oxidative stress, preserved red blood cells as oxygen carrier in the perfusate, but did not improve clinically relevant parameters like kidney function or attenuate kidney damage. Nevertheless, due to its antioxidative properties vitamin C might be a beneficial supplement to clinical kidney graft perfusion protocols.


Asunto(s)
Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Riñón/efectos de los fármacos , Preservación de Órganos , Estrés Oxidativo/efectos de los fármacos , Perfusión , Daño por Reperfusión/prevención & control , Animales , Citocinas/metabolismo , Femenino , Hemoglobinas/metabolismo , Técnicas In Vitro , Riñón/metabolismo , Riñón/patología , Preservación de Órganos/efectos adversos , Perfusión/efectos adversos , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Sus scrofa
19.
PLoS One ; 14(7): e0220467, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31361786

RESUMEN

Many details of the pathophysiology of subarachnoid haemorrhage (SAH) still remain unknown, making animal experiments an indispensable tool for assessment of diagnostics and therapy. For animal protection and project authorization, one needs objective measures to evaluate the severity and burden in each model. Corticosterone is described as a sensitive stress parameter reflecting the acute burden, and inflammatory markers can be used for assessment of the extent of the brain lesion. However, the brain lesion itself may activate the hypothalamic-pituitary-adrenal-axis early after SAH, as shown for ischemic stroke, probably interfering with early inflammatory processes, thus complicating the assessment of severity and burden on the basis of corticosterone and inflammation. To assess the suitability of these markers in SAH, we evaluated the courses of corticosterone, IL-6 and TNF-α up to 6h in an acute model simulating SAH in continuously anaesthetized rats, lacking the pain and stress induced impact on these parameters. Animals were randomly allocated to sham or SAH. SAH was induced by cisterna magna blood-injection, and intracranial pressure and cerebral blood flow were measured under continuous isoflurane/fentanyl anaesthesia. Withdrawn at predetermined time points, blood was analysed by commercial ELISA kits. After 6h the brain was removed for western blot analysis of IL-6 and TNF-α. Serum corticosterone levels were low with no significant difference between sham and SAH. No activation of the HPA-axis was detectable, rendering corticosterone a potentially useful parameter for stress assessment in future chronic studies. Blood IL-6 and TNF-α increased in both groups over time, with IL-6 increasing significantly more in SAH compared to sham towards the end of the observation period. In the basal cortex, IL-6 and TNF-α increased only in SAH. The pro-inflammatory response seems to start locally in the brain, reflected by an increase in peripheral blood. An additional surgery-induced systemic inflammatory response should be considered.


Asunto(s)
Corticosterona/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/patología , Índice de Severidad de la Enfermedad , Hemorragia Subaracnoidea/fisiopatología , Animales , Inflamación/metabolismo , Masculino , Ratas , Ratas Wistar , Medición de Riesgo
20.
Int J Mol Sci ; 20(9)2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31035686

RESUMEN

The Pringle maneuver (PM) has been widely used to control blood loss during liver resection. However, hepatic inflow occlusion can also result in hepatic ischemia-reperfusion injury (IRI), especially in patients with a cholestatic, fibrotic, or cirrhotic liver. Here we investigate a nitric oxide synthase (NOS) inhibitor N-Nitroarginine methyl ester (L-NAME) on IRI after the PM and partial hepatectomy of cholestatic livers induced by bile duct ligation (BDL) in rats. Control group (non-BDL/no treatment), BDL + T group (BDL/L-NAME treatment) and BDL group (BDL/no treatment) were analyzed. Cholestasis was induced by BDL in the L-NAME and BDL group and a 50% partial hepatectomy with PM was performed. L-NAME was injected before PM in the BDL + T group. Hepatocellular damage, portal venous flow, microcirculation, endothelial lining, and eNOS, iNOS, interleukin (IL)-6, and transforming growth factor-ß (TGF-ß) were evaluated. Microcirculation of the liver in the BDL + T group tended to be higher. Liver damage and apoptotic index were significantly lower and Ki-67 labeling index was higher in the BDL + T group while iNOS and TGF-ß expression was decreased. This was corroborated by a better preserved endothelial lining. L-NAME attenuated IRI following PM and improved proliferation/regeneration of cholestatic livers. These positive effects were considered as the result of improved hepatic microcirculation, prevention of iNOS formation, and TGF-ß mRNA upregulation.


Asunto(s)
Colestasis Intrahepática/complicaciones , Colestasis Intrahepática/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Daño por Reperfusión/complicaciones , Daño por Reperfusión/metabolismo , Animales , Biomarcadores , Colestasis Intrahepática/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ácido Hialurónico/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inmunohistoquímica , Mediadores de Inflamación/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Microcirculación/efectos de los fármacos , Óxido Nítrico/metabolismo , Ratas , Daño por Reperfusión/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA