Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Transl Med ; 21(1): 844, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996876

RESUMEN

BACKGROUND: Non-union formation still represents a major burden in trauma and orthopedic surgery. Moreover, aged patients are at an increased risk for bone healing failure. Parathyroid hormone (PTH) has been shown to accelerate fracture healing in young adult animals. However, there is no information whether PTH also stimulates bone regeneration in atrophic non-unions in the aged. Therefore, the aim of the present study was to analyze the effect of PTH on bone regeneration in an atrophic non-union model in aged CD-1 mice. METHODS: After creation of a 1.8 mm segmental defect, mice femora were stabilized by pin-clip fixation. The animals were treated daily with either 200 mg/kg body weight PTH 1-34 (n = 17) or saline (control; n = 17) subcutaneously. Bone regeneration was analyzed by means of X-ray, biomechanics, micro-computed tomography (µCT) imaging as well as histological, immunohistochemical and Western blot analyses. RESULTS: In PTH-treated animals bone formation was markedly improved when compared to controls. This was associated with an increased bending stiffness as well as a higher number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and CD31-positive microvessels within the callus tissue. Furthermore, PTH-treated aged animals showed a decreased inflammatory response, characterized by a lower number of MPO-positive granulocytes and CD68-positive macrophages within the bone defects when compared to controls. Additional Western blot analyses demonstrated a significantly higher expression of cyclooxygenase (COX)-2 and phosphoinositide 3-kinase (PI3K) in PTH-treated mice. CONCLUSION: Taken together, these findings indicate that PTH is an effective pharmacological compound for the treatment of non-union formation in aged animals.


Asunto(s)
Regeneración Ósea , Fosfatidilinositol 3-Quinasas , Humanos , Ratones , Animales , Anciano , Microtomografía por Rayos X , Hormona Paratiroidea/farmacología , Hormona Paratiroidea/uso terapéutico , Curación de Fractura
2.
Biomed Pharmacother ; 168: 115697, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37864892

RESUMEN

Non-unions represent a major complication in trauma and orthopedic surgery. Many factors contribute to bone regeneration, out of which an adequate vascularization has been recognized as crucial. The phosphodiesterase-3 (PDE-3) inhibitor cilostazol has been shown to exert pro-angiogenic and pro-osteogenic effects in a variety of preclinical studies. Hence, we herein investigated the effects of cilostazol on bone regeneration in an atrophic non-union model in mice. For this purpose, a 1.8 mm femoral segmental defect was stabilized by pin-clip fixation and the animals were treated daily with 30 mg/kg body weight cilostazol or saline (control) per os. At 2, 5 and 10 weeks after surgery the healing of femora was analyzed by X-ray, biomechanics, photoacoustic imaging, and micro-computed tomography (µCT). To investigate the cellular composition and the growth factor expression of the callus tissue additional histological, immunohistochemical and Western blot analyses were performed. Cilostazol-treated animals showed increased bone formation within the callus, resulting in an enhanced bending stiffness when compared to controls. This was associated with a more pronounced expression of vascular endothelial growth factor (VEGF), a higher number of CD31-positive microvessels and an increased oxygen saturation within the callus tissue. Furthermore, cilostazol induced higher numbers of tartrate-resistant acidic phosphate (TRAP)-positive osteoclasts and CD68-positive macrophages. Taken together, these findings demonstrate that cilostazol is a promising drug candidate for the adjuvant treatment of atrophic non-unions in clinical practice.


Asunto(s)
Curación de Fractura , Factor A de Crecimiento Endotelial Vascular , Ratones , Animales , Cilostazol/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Microtomografía por Rayos X , Regeneración Ósea , Inhibidores de Fosfodiesterasa/farmacología
3.
J Transl Med ; 21(1): 607, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684656

RESUMEN

Non-union formation represents a major complication in trauma and orthopedic surgery. The phosphodiesterase-5 (PDE-5) inhibitor sildenafil has been shown to exert pro-angiogenic and pro-osteogenic effects in vitro and in vivo. Therefore, the aim of the present study was to analyze the impact of sildenafil in an atrophic non-union model in mice. After creation of a 1.8 mm segmental defect, mice femora were stabilized by pin-clip fixation. Bone regeneration was analyzed by means of X-ray, biomechanics, photoacoustic and micro-computed tomography (µCT) imaging as well as histological, immunohistochemical and Western blot analyses at 2, 5 and 10 weeks after surgery. The animals were treated daily with either 5 mg/kg body weight sildenafil (n = 35) or saline (control; n = 35) per os. Bone formation was markedly improved in defects of sildenafil-treated mice when compared to controls. This was associated with a higher bending stiffness as well as an increased number of CD31-positive microvessels and a higher oxygen saturation within the callus tissue. Moreover, the bone defects of sildenafil-treated animals contained more tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and CD68-positive macrophages and exhibited a higher expression of the pro-angiogenic and pro-osteogenic markers cysteine rich protein (CYR)61 and vascular endothelial growth factor (VEGF) when compared to controls. These findings demonstrate that sildenafil acts as a potent stimulator of angiogenesis and bone regeneration in atrophic non-unions.


Asunto(s)
Inhibidores de Fosfodiesterasa 5 , Factor A de Crecimiento Endotelial Vascular , Animales , Ratones , Citrato de Sildenafil/farmacología , Citrato de Sildenafil/uso terapéutico , Inhibidores de Fosfodiesterasa 5/farmacología , Inhibidores de Fosfodiesterasa 5/uso terapéutico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5 , Microtomografía por Rayos X , Regeneración Ósea , Atrofia
4.
Photoacoustics ; 28: 100409, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36213763

RESUMEN

Non-union formation represents a major complication in trauma surgery. Adequate vascularization has been recognized as vital for bone healing. However, the role of vascularization in the pathophysiology of non-union formation remains elusive. This is due to difficulties in studying bone microcirculation in vivo. Therefore, we herein studied in a murine osteotomy model whether photoacoustic imaging may be used to analyze vascularization in bone healing and non-union formation. We found that oxygen saturation within the callus tissue is significantly lower in non-unions compared to unions and further declines over time. Moreover, the amount of total hemoglobin (HbT) within the callus tissue was markedly reduced in non-unions. Correlation analyses showed a strong positive correlation between microvessel density and HbT, indicating that photoacoustically determined HbT is a valid parameter to assess vascularization during bone healing. In summary, photoacoustic imaging is a promising approach to study vascular function and tissue oxygenation in bone regeneration.

5.
Bone ; 162: 116475, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35752408

RESUMEN

Despite growing knowledge about the mechanisms of fracture healing, non-union formation still represents a major complication in trauma and orthopedic surgery. Non-union models in mice gain increasing interest, because they allow investigating the molecular and cellular mechanisms of failed fracture healing. These models often use segmental defects to achieve non-union formation. Alternatively, failed fracture healing can be induced by transverse fractures with additional periosteal injury. The present study systematically compared the reliability of these two approaches to serve as non-union model. A 0.6 mm K-wire was inserted into the femora of CD-1 mice in a retrograde fashion and a closed transverse femoral fracture was created. Subsequently, the fracture site was exposed and the periosteum was cauterized. This approach was compared with a well-established non-union model involving the pin-clip fixation of a 1.8 mm segmental defect. The callus tissue was analyzed by means of radiography, biomechanics, histology and Western blotting. At 10 weeks after surgery 10 out of 12 femora (83.3 %) of the K-wire group showed a non-union formation. The pin-clip model resulted in 100 % non-union formation. The K-wire group showed increased bone formation, osteoclast activity and bending stiffness when compared to the group with pin-clip fixation. This was associated with a higher expression of bone formation markers. However, the number of CD31-positive microvessels was reduced in the K-wire group, indicating an impaired angiogenic capacity after periosteal cauterization. These findings suggest that the pin-clip model is more reliable for the study of non-union formation in mice. The K-wire model including periosteal injury by cauterization however, may be particularly applied in preclinical studies which explore the effects of damaged periosteum and reduced angiogenic capacity to trauma-induced fractures.


Asunto(s)
Fracturas del Fémur , Periostio , Animales , Fracturas del Fémur/cirugía , Curación de Fractura , Ratones , Reproducibilidad de los Resultados , Instrumentos Quirúrgicos
6.
J Gerontol A Biol Sci Med Sci ; 77(5): 909-917, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-34626193

RESUMEN

The failure of fracture healing represents a substantial clinical problem. Moreover, aged patients demonstrate an elevated risk for failed bone healing. However, murine models to study the failure of fracture healing are established only in young adult animals. Therefore, the aim of this study was to develop a reliable model to study failed fracture healing in aged mice. After creation of a 1.8-mm segmental defect and periosteal resection, femora of aged mice (18-20 months) and young adult control mice (3-4 months) were stabilized by pin-clip fixation. Segmental defects were analyzed by means of biomechanics, x-ray, and micro-computed tomography, as well as histomorphometric, immunohistochemical, and Western blot analysis. After 10 weeks, all animals showed a complete lack of osseous bridging, resulting in fracture healing failure. Segmental defects in aged mice revealed a reduced bone formation and vascularization when compared to young adult mice. This was associated with a decreased expression of bone formation markers. In addition, we detected a reduced number of tartrate-resistant acid phosphatase-positive osteoclasts and an elevated osteoprotegerin/receptor activator of NF-ĸB ligand ratio in aged animals, indicating a reduced osteoclast activity. Moreover, aged animals showed also an enhanced inflammatory response, characterized by an increased infiltration of macrophages within the callus tissue. Taken together, we herein report for the first time a reliable model to study fracture healing failure in aged mice. In the future, the use of this model enables us to study novel therapeutic strategies and molecular mechanics of failed fracture healing during aging.


Asunto(s)
Callo Óseo , Curación de Fractura , Animales , Callo Óseo/metabolismo , Fémur/cirugía , Curación de Fractura/fisiología , Humanos , Ratones , Osteoclastos/metabolismo , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA