Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Anal Chem ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012265

RESUMEN

Chlorinated paraffins (CPs) are complex mixtures of polychlorinated n-alkanes with multiple carbon- (C-, nC = 9-30) and chlorine homologues (Cl-, nCl = 3-18). The mass spectrometric analysis of CPs is time-consuming and challenging, especially when interferences between CPs, their transformation products, or from the matrix are numerous. These analytical challenges and the lack of appropriate and accessible data evaluation tools are obstacles to their analysis. CP-Hunter is a web-based, open-access data processing platform for the automatic analysis of mass spectra of CPs and their transformation products. Extracts of two consumer plastic materials and sewage sludge were evaluated with CP-Hunter. C- and Cl-homologue distributions were obtained in quasi-real-time and the posterior calculated fingerprints were in agreement with the ones obtained by traditional methods. However, the data extraction and evaluation time were now reduced from several minutes to seconds. The implemented signal deconvolution method, i.e., to resolve mass spectrometric interferences, provides robust results, even when severe matrix effects are present. CP-Hunter facilitates the untargeted analysis of unknown products and the detection and elimination of false positive signals. Finally, data evaluation with CP-Hunter is performed locally without the transfer of data to external servers. The tool is safe, public, and accessible at https://cphunter.cheminfo.org/.

2.
J Synchrotron Radiat ; 31(Pt 3): 605-612, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38592969

RESUMEN

Experimental characterization of the structural, electronic and dynamic properties of dilute systems in aqueous solvents, such as nanoparticles, molecules and proteins, are nowadays an open challenge. X-ray absorption spectroscopy (XAS) is probably one of the most established approaches to this aim as it is element-specific. However, typical dilute systems of interest are often composed of light elements that require extreme-ultraviolet to soft X-ray photons. In this spectral regime, water and other solvents are rather opaque, thus demanding radical reduction of the solvent volume and removal of the liquid to minimize background absorption. Here, we present an experimental endstation designed to operate a liquid flat jet of sub-micrometre thickness in a vacuum environment compatible with extreme ultraviolet/soft XAS measurements in transmission geometry. The apparatus developed can be easily connected to synchrotron and free-electron-laser user-facility beamlines dedicated to XAS experiments. The conditions for stable generation and control of the liquid flat jet are analyzed and discussed. Preliminary soft XAS measurements on some test solutions are shown.

3.
Chemosphere ; 349: 140825, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38040258

RESUMEN

Exposure of humans to chlorinated paraffins (CPs) and chlorinated olefins (COs) can occur via contact with CP-containing plastic materials. Such plastic materials can contain short-chain CPs (SCCPs), which are regulated as persistent organic pollutants (POPs) under the Stockholm Convention since 2017. Municipal wastewater treatment plants (WWTP) collect effluents of thousands of households and their sludge is a marker for CP exposure. We investigated digested sewage sludge collected in the years 1993, 2002, 2007, 2012, and 2020 from a Swiss WWTP serving between 20000 and 23000 inhabitants. A liquid chromatography mass spectrometry (R > 100000) method, in combination with an atmospheric pressure chemical ionization source (LC-APCI-MS), was used to detect mass spectra of CPs and olefinic side products. A R-based automated spectra evaluation routine (RASER) was applied to search for ∼23000 ions whereof ∼6000 ions could be assigned to CPs, chlorinated mono- (COs), di- (CdiOs) and tri-olefins (CtriOs). Up to 230 CP-, 120 CO-, 50 CdiO- and 20 CtriO-homologues could be identified in sludge. Characteristic fingerprints were deduced describing C- and Cl-homologue distributions, chlorine- (nCl) and carbon- (nC) numbers of CPs and COs. In addition, proportions of saturated and unsaturated material were determined together with proportions of different chain length classes including short- (SC), medium- (MC), long- (LC) and very long-chain (vLC) material. A substantial reduction of SCCPs of 84% was observed from 1993 to 2020. Respective levels of MCCPs, LCCPs and vLCCPs decreased by 61, 69 and 58%. These trends confirm that banned SCCPs and non-regulated CPs are present in WWTP sludge and higher-chlorinated SCCPs were replaced by lower chlorinated MCCPs. Combining high-resolution mass spectrometry with a selective and fast data evaluation method can produce characteristic fingerprints of sewage sludge describing the long-term trends in a WWTP catchment area.


Asunto(s)
Hidrocarburos Clorados , Purificación del Agua , Humanos , Hidrocarburos Clorados/análisis , Aguas del Alcantarillado/análisis , Parafina/análisis , Suiza , Monitoreo del Ambiente/métodos , Halógenos/análisis , Iones/análisis , China
4.
Anal Chem ; 94(40): 13777-13784, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36169133

RESUMEN

Chlorinated paraffins (CPs) are complex mixtures consisting of various C homologues (nC ≈ 10-30) and Cl homologues (nCl ≈ 2-20). Technical CP mixtures are produced on a large scale (>106 t/y) and are widely used such as plasticizers in plastic and coolants in metalwork. Since 2017, short-chain CPs (C10-C13) are classified as persistent organic pollutants (POPs) by the Stockholm Convention but longer-chain CPs are not regulated. Analysis of technical CP mixtures is challenging because they consist of hundreds of homologues and millions of constitutional isomers and stereoisomers. Furthermore, such mixtures can also contain byproducts and transformation products such as chlorinated olefins (COs). We applied a liquid-chromatography method coupled to an atmospheric pressure chemical ionization technique with a high-resolution mass detector (LC-APCI-Orbitrap-MS) to study CP and CO homologues in two plastic materials. Respective mass spectra can contain up to 23,000 signals from 1320 different C-Cl homologue classes. The R-based automated spectra evaluation routine (RASER) was developed to efficiently search for characteristic ions in these complex mass spectra. With it, the time needed to evaluate such spectra was reduced from weeks to hours, compared to manual data evaluation. Unique sets of homologue distributions could be obtained from the two plastic materials. CPs were found together with their transformation products, the chlorinated mono-olefins (COs), di-olefins (CdiOs), and tri-olefins (CtriOs) in both plastic materials. Based on these examples, it can be shown that RASER is an efficient and selective tool for evaluating high-resolution mass spectra of CP mixtures containing hundreds of homologues.


Asunto(s)
Hidrocarburos Clorados , Parafina , Alquenos/análisis , China , Mezclas Complejas/análisis , Monitoreo del Ambiente/métodos , Hidrocarburos Clorados/análisis , Parafina/análisis , Parafina/química , Contaminantes Orgánicos Persistentes , Plastificantes/análisis , Plásticos
6.
Chimia (Aarau) ; 76(3): 192-202, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069733

RESUMEN

The kinetics of most of chemical energy storage and conversion processes is rate-limited by the mass transport through matter. There is an uncertainty on the corresponding kinetic models, especially if based solely on kinetic theory. Henceforth analytical strategies coupled to setups, in order to capture data for overcoming this limitation are essential. Operando chemical imaging of the kinetics process supports the identification of rate-limiting barriers and definition of actionable kinetic insights. After an overview of the chemical and physical processes in various energy storage/conversion systems, and examples of chemical imaging applied on them, analytical challenges are discussed with particular focus on novel methods and fundamental limitations. Despite convincing success technologies, various scientific challenges of operando chemical kinetics await solution. Apart from technical improvements of the analysis instrumentation, promising developments are seen in advanced digital science.

7.
Chemosphere ; 291(Pt 2): 132939, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34800506

RESUMEN

Transformation studies of chlorinated paraffins (CPs) and the effects of CP transformation products on humans, biota and environment are rare. The focus here is on hydroxylation reactions. As for polyhalogenated persistent organic pollutants (POPs) in general, hydroxylation reactions convert lipophilic material to more polar compounds with increased mobility. We investigated the in-vitro transformation of single-chain CP-mixtures to hydroxylated products with the dehalogenase LinB from Sphingobium indicum. C11-, C12- and C13-single-chain CP-homologues were exposed to LinB and mono-hydroxylated (CP-ols) and di-hydroxylated (CP-diols) transformation products were formed. Liquid-chromatography coupled to mass-spectrometry (LC-MS) was used to detect hydroxylated products and to separate them from the starting material. The presented data can be used to identify these CP-ol and CP-diol homologues in other samples. Hydroxylated products had lower chlorination degrees (nCl) than respective CP-starting-materials. Reactive and persistent CP-material was found in each homologue group. Reactive material is converted within hours by LinB, while more persistent CPs are transformed within days. Homologue-specific kinetic models were established to simulate the stepwise hydroxylation of persistent CPs to mono- and di-hydroxylated products. First-order rate constants for the formation of CP-ols (k1) and CP-diols (k2) were deduced for different homologues. Lower-chlorinated CP-ols did not accumulate to large extent and were transformed quickly to CP-diols, while higher-chlorinated CP-ols and -diols both accumulated. By enzymatic transformation of single-chain CPs with LinB, we synthesized unique sets of mono- and di-hydroxylated materials, which can be used as analytical standards and as starting materials for metabolic, toxicity and environmental fate studies.


Asunto(s)
Hidrocarburos Clorados , Sphingomonadaceae , Monitoreo del Ambiente , Halogenación , Humanos , Hidrocarburos Clorados/análisis , Cinética , Parafina/análisis
8.
Chemosphere ; 291(Pt 2): 132938, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34798110

RESUMEN

Technical chlorinated paraffins (CPs) are produced via radical chlorination of n-alkane feedstocks with different carbon chain-lengths (∼C10-C30). Short-chain CPs (SCCPs, C10-C13) are classified as persistent organic pollutants (POPs) under the Stockholm Convention. This regulation has induced a shift to use longer-chain CPs as substitutes. Consequently, medium-chain (MCCPs, C14-C17) and long-chain (LCCPs, C>17) CPs have become dominant homologues in recent environmental samples. However, no suitable LCCP-standard materials are available. Herein, we report on the chemical synthesis of single-chain C18-CP-materials, starting with a pure n-alkane and sulfuryl chloride (SO2Cl2). Fractionation of the crude product by normal-phase liquid-chromatography and pooling of suitable fractions yielded in four C18-CP-materials with different chlorination degrees (mCl,EA = 39-52%). In addition, polar side-products, tentatively identified as sulfite-, sulfate- and bis-sulfate-diesters, were separated from CPs. The new single-chain materials were characterized by LC-MS, 1H-NMR and EA. LC-MS provided Relative retention times for different C18-CP homologues and side-products. Mathematical deconvolution of full-scan mass spectra revealed the presence of chloroparaffins (57-93%) and chloroolefins (COs, 7-26%) in the four single-chain C18-CP-materials. Homologue distributions and chlorination degrees were deduced for CPs and COs. 1H-NMR revealed chemical shift ranges of mono-chlorinated (δ = 3.2-5.3 ppm) and non-chlorinated (δ = 1.0-3.2 ppm) hydrocarbon moieties. The synthesized C18-single-chain standard materials and respective spectroscopic data are useful to identify and quantify LCCPs in various materials and environmental samples. CP- and CO-distributions resemble the ones of existing SCCP and MCCP reference materials and technical mixtures. Furthermore, these materials now allow specific studies on the environmental fate and the transformation of long-chain chloroparaffins and chloroolefins.


Asunto(s)
Hidrocarburos Clorados , China , Monitoreo del Ambiente , Halogenación , Hidrocarburos Clorados/análisis , Espectrometría de Masas , Parafina/análisis
9.
Chemosphere ; 283: 131199, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34153917

RESUMEN

Structure, reactivity and physico-chemical properties of polyhalogenated compounds determine their up-take, transport, bio-accumulation, transformation and toxicity and their environmental fate. In technical mixtures of chlorinated paraffins (CPs), these properties are distributed due to the presence of thousands of homologues. We hypothesized that roles of CP dehalogenation reactions, catalyzed by the haloalkane dehalogenase LinB, depend on structural properties of the substrates, e.g. chlorination degree and carbon-chain length. We exposed mixtures of chlorinated undecanes, dodecanes and tridecanes in-vitro to LinB from Sphingobium Indicum bacteria. These single-chain CP-materials also contain small amounts of chlorinated olefins (COs), which can be distinct by mathematical deconvolution of respective mass-spectra. With this procedure, we obtained homologue-specific transformation kinetics of substrates differing in saturation degree, chlorination degree and carbon chain-length. For all homologues, two-stage first-order kinetic models were established, which described the faster conversion of reactive material and the slower transformation of more persistent material. Half-lifes of 0.5-3.2 h and 56-162 h were determined for more reactive and more persistent CP-material. Proportions of persistent material increased steadily from 18 to 67% for lower (Cl6) to higher (Cl11) chlorinated paraffins and olefins. Conversion efficiencies decreased with increasing chlorination degree from 97 to 70%. Carbon-chain length had only minor effects on transformation rates. Hence, the conversion was faster and more efficient for lower-chlorinated material, and slower for higher-chlorinated and longer-chained CPs and COs. Current legislation has banned short-chain chlorinated paraffins (SCCPs) and forced a transition to longer-chain CPs. This may be counterproductive with regard to enzymatic transformation with LinB.


Asunto(s)
Hidrocarburos Clorados , Sphingomonadaceae , Alquenos , Monitoreo del Ambiente , Hidrocarburos Clorados/análisis , Cinética , Parafina/análisis , Sphingomonadaceae/genética
11.
Chemosphere ; 262: 128288, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33182101

RESUMEN

Short-chain chlorinated paraffins (SCCPs) are listed as persistent organic pollutants (POPs) under the Stockholm Convention. Such substances are toxic, bioaccumulating, transported over long distances and degrade slowly in the environment. Certain bacterial strains of the Sphingomonadacea family are able to degrade POPs, such as hexachlorocyclohexanes (HCHs) and hexabromocyclododecanes (HBCDs). The haloalkane dehalogenase LinB, expressed in certain Sphingomonadacea, is able to catalyze the transformation of haloalkanes to hydroxylated compounds. Therefore, LinB is a promising candidate for conversion of SCCPs. Hence, a mixture of chlorinated tridecanes was exposed in vitro to LinB, which was obtained through heterologous expression in Escherichia coli. Liquid chromatography mass spectrometry (LC-MS) was used to analyze chlorinated tridecanes and their transformation products. A chloride-enhanced soft ionization method, which favors the formation of chloride adducts [M+Cl]- without fragmentation, was applied. Mathematical deconvolution was used to distinguish interfering mass spectra of paraffinic, mono-olefinic and di-olefinic compounds. Several mono- and di-hydroxylated products including paraffinic, mono-olefinic and di-olefinic compounds were found after LinB exposure. Mono- (rt = 5.9-6.9 min) and di-hydroxylated (rt = 3.2-4.5 min) compounds were separated from starting material (rt = 7.7-8.5 min) by reversed phase LC. Chlorination degrees of chlorinated tridecanes increased during LinB-exposure from nCl = 8.80 to 9.07, indicating a preferential transformation of lower chlorinated (Cl<9) tridecanes. Thus, LinB indeed catalyzed a dehalohydroxylation of chlorinated tridecanes, tridecenes and tridecadienes. The observed hydroxylated compounds are relevant CP transformation products whose environmental and toxicological effects should be further investigated.


Asunto(s)
Contaminantes Ambientales/análisis , Hidrocarburos Clorados/análisis , Hidrolasas/química , Parafina/análisis , Biocatálisis , Monitoreo del Ambiente/métodos , Escherichia coli/enzimología , Escherichia coli/genética , Halogenación , Hexaclorociclohexano/análisis , Hidrocarburos Bromados/análisis , Hidrolasas/aislamiento & purificación , Hidroxilación , Sphingomonadaceae/enzimología , Sphingomonadaceae/genética
12.
Chemosphere ; 255: 126959, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32388263

RESUMEN

The photolytic chlorination of n-alkanes in presence of sulfuryl chloride (SO2Cl2) was explored to produce new standard materials. Five mixtures of chlorinated tetradecanes were synthesized with chlorination degrees (mCl,EA) varying from 43.7% to 59.4% (m/m) based on elemental analysis. Chlorine-enhanced negative chemical ionization mass spectrometry (CE-NCI-MS) forcing the formation of chloride-adduct ions [M+Cl]- was applied to characterize these materials which all contained tetra-to deca-chlorinated paraffins. Deconvolution of respective mass spectra revealed the presence of chlorinated olefins (COs). CO levels were highest in materials, which were exposed longest. All synthesized materials also contained two classes of polar impurities, tentatively assigned as sulfite- and sulfate-diesters with molecular formulas of C14H28-xO3SClx (x = 1-4) and C14H28-xO4SClx (x = 3-6), respectively. MS data were in accordance with the proposed structures but further work is needed to deduce their constitutions. These compounds are thermolabile and were not detected with GC-MS methods. We could remove these sulfur-containing impurities from the CPs with normal-phase liquid chromatography. In conclusion, single-chain CP materials were synthesized via chlorination of n-alkanes with sulfuryl chloride, but these materials contained reactive side products which should be removed to gain non-reactive and stable CP materials suitable as standards and for fate and toxicity studies.


Asunto(s)
Hidrocarburos Clorados/química , Alcanos , Alquenos , Cloro/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Halogenación , Hidrocarburos Clorados/análisis , Espectrometría de Masas/métodos , Parafina/análisis
13.
J Am Soc Mass Spectrom ; 31(2): 257-266, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32031392

RESUMEN

The range of commercial techniques for high-resolution gas-chromatography-mass spectrometry (GC-MS) has been recently extended with the introduction of GC Orbitrap Fourier transform mass spectrometry (FTMS). We report on progress with quantitation performance in the analysis of persistent organic pollutants (POP), by averaging of time-domain signals (transients), from a number of GC-FTMS experiment replicates. Compared to a standard GC-FTMS measurement (a single GC-FTMS experiment replicate, mass spectra representation in reduced profile mode), for the 10 GC-FTMS technical replicates of ultratrace POP analysis, sensitivity improvement of up to 1 order of magnitude is demonstrated. The accumulation method was implemented with an external high-performance data acquisition system and dedicated data processing software to acquire the time-domain data for each GC-FTMS replicate and to average the acquired GC-FTMS data sets. Concomitantly, the increased flexibility in ion signal detection allowed the attainment of ultrahigh-mass resolution (UHR), approaching R = 700 000 at m/z = 200.

14.
Rapid Commun Mass Spectrom ; 33(14): 1196-1206, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31017695

RESUMEN

RATIONALE: Species with ionization energies beyond what is accessible using state-of-the-art lab sources are affected by poor detection limits in ordinary mass spectrometry setups, whose throughput is also often limited. Extreme ultraviolet (XUV) photoionization mass spectrometry, in combination with linear time-of-flight (TOF), is necessary for the sensitive detection of high ionization energy compounds at trace level. XUV photoionization is available at beamlines, although with limited access. A tabletop setup may fill such a gap. METHODS: A self-developed tabletop system, based on a plasma discharge with extreme ultraviolet emission (λ = 5-50 nm) coupled to a TOF mass spectrometer, was used in this study. Simultaneous validation measurements with a reference electron ionization quadrupole mass filter were carried out. An in-house developed hollow toroidal coil (HTC) induction detector was used for concomitant photoelectron detection. RESULTS: Straightforward XUV mass spectra without fragmentation, thanks to the single-photon ionization, were acquired. The measurements with the reference quadrupole were in agreement with the spectra acquired by XUV-TOF. The resolution obtained for N2 was at least factor of 2 higher than that measured with the reference quadrupole. Initial energy distributions of photoelectrons were retrieved by cross-correlation that gave access to the photoionization distribution. CONCLUSIONS: The system allows XUV single-photon ionization of elements and molecules with IE >10 eV that are of fundamental interest e.g. for water splitting and catalysis research. The demonstrated performance is now suitable for a prototype platform.

16.
Anal Chem ; 90(15): 9234-9240, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29963853

RESUMEN

Nanoscale depth profiling analysis of a CoNCN-coated electrode for water oxidation catalysis was carried out using table-top extreme ultraviolet (XUV) laser ablation time-of-flight mass spectrometry. The self-developed laser operates at λ = 46.9 nm and represents factor of 4 reduction in wavelength with respect to the 193 nm excimer laser. The reduction of the wavelength is an alternative approach to the reduction of the pulse duration, to enhance the ablation characteristics and obtain smaller quasi-nondestructive ablation pits. Such a XUV-laser ablation method allowed distinguishing different composite components of the catalyst-Nafion blend, used to modify a screen-printed carbon electrode surface. Chemical information was extracted by fragment assignment and relative amplitude analysis of the mass spectrometry peaks. Pure Nafion and the exposed carbon substrate were compared as references. Material specific fragments were clearly identified by the detected nonoverlapping mass-to-charge peaks of Nafion and CoNCN. Three dimensional mapping of relevant mass peak amplitudes was used to determine the lateral distribution and to generate depth profiles from consecutive laser pulses. Evaluating the profiles of pristine electrodes gave insight into fragmentation behavior of the catalyst in a functional ionomer matrix and comparison of post-catalytic electrodes revealed spots of thin localized Co residues.

17.
ACS Omega ; 3(1): 724-733, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30023786

RESUMEN

Biofilms causing medical conditions or interfering with technical applications can prove undesirably resistant to silver nanoparticle (AgNP)-based antimicrobial treatment, whereas beneficial biofilms may be adversely affected by the released silver nanoparticles. Isolated biofilm matrices can induce reduction of silver ions and stabilization of the formed nanosilver, thus altering the exposure conditions. We thus study the reduction of silver nitrate solution in model experiments under chemically defined conditions as well as in stream biofilms. Formed silver nanoparticles are characterized by state-of-the art methods. We find that isolated biopolymer fractions of biofilm organic matrix are capable of reducing ionic Ag, whereas other isolated fractions are not, meaning that biopolymer fractions contain both reducing agent and nucleation seed sites. In all of the investigated systems, we find that silver nanoparticle-biopolymer interface is dominated by carboxylate functional groups. This suggests that the mechanism of nanoparticle formation is of general nature. Moreover, we find that glucose concentration within the biofilm organic matrix correlates strongly with the nanoparticle formation rate. We propose a simple mechanistic explanation based on earlier literature and the experimental findings. The observed generality of the extracellular polymeric substance/AgNP system could be used to improve the understanding of impact of Ag+ on aqueous ecosystems, and consequently, to develop biofilm-specific medicines and bio-inspired water decontaminants.

18.
Appl Opt ; 57(6): 1315-1320, 2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-29469828

RESUMEN

Short-wavelength imaging, spectroscopy, and lithography scale down the characteristic length-scale to nanometers. This poses tight constraints on the optics finishing tolerances, which is often difficult to characterize. Indeed, even a tiny surface defect degrades the reflectivity and spatial projection of such optics. In this study, we demonstrate experimentally that a Hartmann wavefront sensor for extreme ultraviolet (XUV) wavelengths is an effective non-contact analytical method for inspecting the surface of multilayer optics. The experiment was carried out in a tabletop laboratory using a high-order harmonic generation as an XUV source. The wavefront sensor was used to measure the wavefront errors after the reflection of the XUV beam on a spherical Ru/B4C multilayer mirror, scanning a large surface of approximately 40 mm in diameter. The results showed that the technique detects the aberrations in the nanometer range.

19.
Rev Sci Instrum ; 88(2): 024710, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28249469

RESUMEN

Ultrafast photoelectron and photoion spectroscopy (as well as their combination known as "coincidence spectroscopy") utilizes detectors based on different electron multipliers such as microchannel plates or single-channel electron multipliers. These detectors have a few important limitations such as fast-signal distortion (low pass operation), mutually exclusive positive or negative mode, dead time, and requirement of trigger. A high-pass induction detector, based on a hollow-cored toroidal coil, was developed that overcomes the above-mentioned limitations. The frequency-dispersive response and linearity of different configurations were analyzed. It is shown that the response is enhanced for ultrafast electron signals, dependent on construction parameters, thus offering response flexibility by design. Kinetic energy distributions of pseudospark-induced electron pulses are characterized in order to validate the capabilities in real applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA