Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
bioRxiv ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39314300

RESUMEN

SAF-A is conserved throughout vertebrates and has emerged as an important factor regulating a multitude of nuclear functions, including lncRNA localization, gene expression, and splicing. SAF-A has several functional domains, including an N-terminal SAP domain that binds directly to DNA. Phosphorylation of SAP domain serines S14 and S26 are important for SAF-A localization and function during mitosis, however whether these serines are involved in interphase functions of SAF-A is not known. In this study we tested for the role of the SAP domain, and SAP domain serines S14 and S26 in X chromosome inactivation, protein dynamics, gene expression, splicing, and cell proliferation. Here we show that the SAP domain serines S14 and S26 are required to maintain XIST RNA localization and polycomb-dependent histone modifications on the inactive X chromosome in female cells. In addition, we present evidence that an Xi localization signal resides in the SAP domain. We found that that the SAP domain is not required to maintain gene expression and plays only a minor role in mRNA splicing. In contrast, the SAF-A SAP domain, in particular serines S14 and S26, are required for normal protein dynamics, and to maintain normal cell proliferation. We propose a model whereby dynamic phosphorylation of SAF-A serines S14 and S26 mediates rapid turnover of SAF-A interactions with DNA during interphase.

2.
Dev Cell ; 58(19): 1917-1932.e6, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37552987

RESUMEN

Long ignored as a vestigial remnant of cytokinesis, the mammalian midbody (MB) is released post-abscission inside large extracellular vesicles called MB remnants (MBRs). Recent evidence suggests that MBRs can modulate cell proliferation and cell fate decisions. Here, we demonstrate that the MB matrix is the site of ribonucleoprotein assembly and is enriched in mRNAs that encode proteins involved in cell fate, oncogenesis, and pluripotency, which we are calling the MB granule. Both MBs and post-abscission MBRs are sites of spatiotemporally regulated translation, which is initiated when nascent daughter cells re-enter G1 and continues after extracellular release. MKLP1 and ARC are necessary for the localization and translation of RNA in the MB dark zone, whereas ESCRT-III is necessary to maintain translation levels in the MB. Our work reveals a unique translation event that occurs during abscission and within a large extracellular vesicle.


Asunto(s)
Citocinesis , ARN , Animales , Humanos , Diferenciación Celular , Células HeLa , Mamíferos
3.
Mol Biol Cell ; 34(4): ar32, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36790906

RESUMEN

Mitosis results in a dramatic reorganization of chromatin structure to promote chromosome compaction and segregation to daughter cells. Consequently, mitotic entry is accompanied by transcriptional silencing and removal of most chromatin-bound RNA from chromosomes. As cells exit mitosis, chromatin rapidly decondenses and transcription restarts as waves of differential gene expression. However, little is known about the fate of chromatin-bound RNAs following cell division. Here we explored whether nuclear RNA from the previous cell cycle is present in G1 nuclei following mitosis. We found that half of all nuclear RNA is inherited in a transcription-independent manner following mitosis. Interestingly, the snRNA U2 is efficiently inherited by G1 nuclei, while the lncRNAs NEAT1 and MALAT1 show no inheritance following mitosis. We found that the nuclear protein SAF-A, which is hypothesized to tether RNA to DNA, did not play a prominent role in nuclear RNA inheritance, indicating that the mechanism for RNA inheritance may not involve RNA chaperones that have chromatin-binding activity. Instead, we observe that the timing of RNA inheritance indicates that a select group of nuclear RNAs are reimported into the nucleus after the nuclear envelope has reassembled. Our work demonstrates that there is a fraction of nuclear RNA from the previous cell cycle that is reimported following mitosis and suggests that mitosis may serve as a time to reset the interaction of lncRNAs with chromatin.


Asunto(s)
ARN Largo no Codificante , ARN Nuclear , Transporte Activo de Núcleo Celular , ARN Nuclear/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Mitosis , Cromatina
4.
Trends Cell Biol ; 31(9): 760-773, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33766521

RESUMEN

Beyond its originally discovered role tethering replicated sister chromatids, cohesin has emerged as a master regulator of gene expression. Recent advances in chromatin topology resolution and single-cell studies have revealed that cohesin has a pivotal role regulating highly dynamic chromatin interactions linked to transcription control. The dynamic association of cohesin with chromatin and its capacity to perform loop extrusion contribute to the heterogeneity of chromatin contacts. Additionally, different cohesin subcomplexes, with specific properties and regulation, control gene expression across the cell cycle and during developmental cell commitment. Here, we discuss the most recent literature in the field to highlight the role of cohesin in gene expression regulation during transcriptional shifts and its relationship with human diseases.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Proteínas de Ciclo Celular/genética , Cromátides , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Expresión Génica , Humanos , Cohesinas
6.
J Biol Chem ; 296: 100202, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33334895

RESUMEN

Elongin A (EloA) is an essential transcription factor that stimulates the rate of RNA polymerase II (Pol II) transcription elongation in vitro. However, its role as a transcription factor in vivo has remained underexplored. Here we show that in mouse embryonic stem cells, EloA localizes to both thousands of Pol II transcribed genes with preference for transcription start site and promoter regions and a large number of active enhancers across the genome. EloA deletion results in accumulation of transcripts from a subset of enhancers and their adjacent genes. Notably, EloA does not substantially enhance the elongation rate of Pol II in vivo. We also show that EloA localizes to the nucleoli and associates with RNA polymerase I transcribed ribosomal RNA gene, Rn45s. EloA is a highly disordered protein, which we demonstrate forms phase-separated condensates in vitro, and truncation mutations in the intrinsically disordered regions (IDR) of EloA interfere with its targeting and localization to the nucleoli. We conclude that EloA broadly associates with transcribed regions, tunes RNA Pol II transcription levels via impacts on enhancer RNA synthesis, and interacts with the rRNA producing/processing machinery in the nucleolus. Our work opens new avenues for further investigation of the role of this functionally multifaceted transcription factor in enhancer and ribosomal RNA biology.


Asunto(s)
Elonguina/metabolismo , Elementos de Facilitación Genéticos , Células Madre Embrionarias de Ratones/metabolismo , ARN/genética , Activación Transcripcional , Animales , Línea Celular , Elonguina/genética , Eliminación de Gen , Ratones , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Sitio de Iniciación de la Transcripción
7.
Mol Cell ; 80(6): 1104-1122.e9, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33259812

RESUMEN

Human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative pathogen of the COVID-19 pandemic, exerts a massive health and socioeconomic crisis. The virus infects alveolar epithelial type 2 cells (AT2s), leading to lung injury and impaired gas exchange, but the mechanisms driving infection and pathology are unclear. We performed a quantitative phosphoproteomic survey of induced pluripotent stem cell-derived AT2s (iAT2s) infected with SARS-CoV-2 at air-liquid interface (ALI). Time course analysis revealed rapid remodeling of diverse host systems, including signaling, RNA processing, translation, metabolism, nuclear integrity, protein trafficking, and cytoskeletal-microtubule organization, leading to cell cycle arrest, genotoxic stress, and innate immunity. Comparison to analogous data from transformed cell lines revealed respiratory-specific processes hijacked by SARS-CoV-2, highlighting potential novel therapeutic avenues that were validated by a high hit rate in a targeted small molecule screen in our iAT2 ALI system.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , COVID-19/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , SARS-CoV-2/metabolismo , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/virología , Animales , Antivirales , COVID-19/genética , COVID-19/patología , Chlorocebus aethiops , Efecto Citopatogénico Viral , Citoesqueleto , Evaluación Preclínica de Medicamentos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/virología , Fosfoproteínas/genética , Transporte de Proteínas , Proteoma/genética , SARS-CoV-2/genética , Transducción de Señal , Células Vero , Tratamiento Farmacológico de COVID-19
8.
J Cell Biol ; 219(11)2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33053167

RESUMEN

During mitosis, the genome is transformed from a decondensed, transcriptionally active state to a highly condensed, transcriptionally inactive state. Mitotic chromosome reorganization is marked by the general attenuation of transcription on chromosome arms, yet how the cell regulates nuclear and chromatin-associated RNAs after chromosome condensation and nuclear envelope breakdown is unknown. SAF-A/hnRNPU is an abundant nuclear protein with RNA-to-DNA tethering activity, coordinated by two spatially distinct nucleic acid-binding domains. Here we show that RNA is evicted from prophase chromosomes through Aurora-B-dependent phosphorylation of the SAF-A DNA-binding domain; failure to execute this pathway leads to accumulation of SAF-A-RNA complexes on mitotic chromosomes, defects in metaphase chromosome alignment, and elevated rates of chromosome missegregation in anaphase. This work reveals a role for Aurora-B in removing chromatin-associated RNAs during prophase and demonstrates that Aurora-B-dependent relocalization of SAF-A during cell division contributes to the fidelity of chromosome segregation.


Asunto(s)
Aurora Quinasa B/metabolismo , Núcleo Celular/genética , Cromatina/química , Cromosomas Humanos/química , Ribonucleoproteína Heterogénea-Nuclear Grupo U/metabolismo , Mitosis , ARN/metabolismo , Aurora Quinasa B/genética , Cromatina/genética , Cromosomas Humanos/genética , Células HEK293 , Ribonucleoproteína Heterogénea-Nuclear Grupo U/genética , Humanos , Fosforilación , ARN/genética
9.
Mol Cell ; 78(1): 127-140.e7, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32035037

RESUMEN

As cells enter mitosis, the genome is restructured to facilitate chromosome segregation, accompanied by dramatic changes in gene expression. However, the mechanisms that underlie mitotic transcriptional regulation are unclear. In contrast to transcribed genes, centromere regions retain transcriptionally active RNA polymerase II (Pol II) in mitosis. Here, we demonstrate that chromatin-bound cohesin is necessary to retain elongating Pol II at centromeres. We find that WAPL-mediated removal of cohesin from chromosome arms during prophase is required for the dissociation of Pol II and nascent transcripts, and failure of this process dramatically alters mitotic gene expression. Removal of cohesin/Pol II from chromosome arms in prophase is important for accurate chromosome segregation and normal activation of gene expression in G1. We propose that prophase cohesin removal is a key step in reprogramming gene expression as cells transition from G2 through mitosis to G1.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona/fisiología , Regulación de la Expresión Génica , Mitosis/genética , Transcripción Genética , Anafase/genética , Animales , Aurora Quinasa B/análisis , Ciclo Celular , Proteínas de Ciclo Celular/análisis , Línea Celular , Centrómero/enzimología , Segregación Cromosómica , Fase G1/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Humanos , Metafase/genética , Profase , ARN Polimerasa II/metabolismo , Xenopus laevis , Cohesinas
10.
RNA ; 26(3): 324-344, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31896558

RESUMEN

Most cells change patterns of gene expression through transcriptional regulation. In contrast, oocytes are transcriptionally silent and regulate mRNA poly(A) tail length to control protein production. However, the genome-wide relationship of poly(A) tail changes to mRNA translation during vertebrate oocyte maturation is not known. We used Tail-seq and polyribosome analysis to measure poly(A) tail and translational changes during oocyte maturation in Xenopus laevis We identified large-scale poly(A) and translational changes during oocyte maturation, with poly(A) tail length changes preceding translational changes. Proteins important for completion of the meiotic divisions and early development exhibited increased polyadenylation and translation during oocyte maturation. A family of U-rich sequence elements was enriched near the polyadenylation signal of polyadenylated and translationally activated mRNAs. We propose that changes in mRNA polyadenylation are a conserved mechanism regulating protein expression during vertebrate oocyte maturation and that these changes are controlled by a spatial code of cis-acting sequence elements.


Asunto(s)
Oogénesis/genética , Poliadenilación/genética , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , Animales , Regulación del Desarrollo de la Expresión Génica/genética , Genoma/genética , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo
11.
J Biol Chem ; 293(32): 12593-12605, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-29903915

RESUMEN

RNA-binding proteins (RBP) are critical regulators of gene expression. Recent studies have uncovered hundreds of mRNA-binding proteins that do not contain annotated RNA-binding domains and have well-established roles in other cellular processes. Investigation of these nonconventional RBPs is critical for revealing novel RNA-binding domains and may disclose connections between RNA regulation and other aspects of cell biology. The endosomal sorting complex required for transport II (ESCRT-II) is a nonconventional RNA-binding complex that has a canonical role in multivesicular body formation. ESCRT-II was identified previously as an RNA-binding complex in Drosophila oocytes, but whether its RNA-binding properties extend beyond Drosophila is unknown. In this study, we found that the RNA-binding properties of ESCRT-II are conserved in Xenopus eggs, where ESCRT-II interacted with hundreds of mRNAs. Using a UV cross-linking approach, we demonstrated that ESCRT-II binds directly to RNA through its subunit, Vps25. UV cross-linking and immunoprecipitation (CLIP)-Seq revealed that Vps25 specifically recognizes a polypurine (i.e. GA-rich) motif in RNA. Using purified components, we could reconstitute the selective Vps25-mediated binding of the polypurine motif in vitro Our results provide insight into the mechanism by which ESCRT-II selectively binds to mRNA and also suggest an unexpected link between endosome biology and RNA regulation.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Óvulo/metabolismo , Purinas/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Xenopus laevis/metabolismo , Animales , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Femenino , Subunidades de Proteína , Purinas/química , ARN/química , ARN/genética , Proteínas de Unión al ARN/genética , Xenopus laevis/genética
12.
Mol Cell Biol ; 38(18)2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29941491

RESUMEN

Accurate chromosome segregation is a fundamental process in cell biology. During mitosis, chromosomes are segregated into daughter cells through interactions between centromeres and microtubules in the mitotic spindle. Centromere domains have evolved to nucleate formation of the kinetochore, which is essential for establishing connections between chromosomal DNA and microtubules during mitosis. Centromeres are typically formed on highly repetitive DNA that is not conserved in sequence or size among organisms and can differ substantially between individuals within the same organism. However, transcription of repetitive DNA has emerged as a highly conserved property of the centromere. Recent work has shown that both the topological effect of transcription on chromatin and the nascent noncoding RNAs contribute to multiple aspects of centromere function. In this review, we discuss the fundamental aspects of centromere transcription, i.e., its dual role in chromatin remodeling/CENP-A deposition and kinetochore assembly during mitosis, from a cell cycle perspective.


Asunto(s)
Centrómero/genética , Centrómero/metabolismo , Transcripción Genética , Animales , Aurora Quinasa B/metabolismo , Proteína A Centromérica/metabolismo , Ensamble y Desensamble de Cromatina , Segregación Cromosómica , ADN/genética , ADN/metabolismo , Humanos , Cinetocoros/metabolismo , Mitosis , Modelos Genéticos , ARN Polimerasa II/metabolismo , ARN Nuclear/genética , ARN Nuclear/metabolismo
13.
Dev Cell ; 42(3): 201-202, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28787584

RESUMEN

Centromeric transcription is a common eukaryotic centromere feature, yet it is unclear how transcription is linked to underlying repetitive satellite sequences. In this issue of Developmental Cell, McNulty et al. (2017) show for human centromeres that all α-satellite sequences are transcribed into chromatin-bound RNAs and are required for centromere assembly.


Asunto(s)
Centrómero , Cromatina , ADN Satélite , Humanos , Secuencias Repetitivas de Ácidos Nucleicos
14.
Elife ; 62017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28346135

RESUMEN

The synaptonemal complex (SC) is an ultrastructurally conserved proteinaceous structure that holds homologous chromosomes together and is required for the stabilization of pairing interactions and the completion of crossover (CO) formation between homologs during meiosis I. Here, we identify a novel role for a central region component of the SC, SYP-4, in negatively regulating formation of recombination-initiating double-strand breaks (DSBs) via a feedback loop triggered by crossover designation in C. elegans. We found that SYP-4 is phosphorylated dependent on Polo-like kinases PLK-1/2. SYP-4 phosphorylation depends on DSB formation and crossover designation, is required for stabilizing the SC in pachytene by switching the central region of the SC from a more dynamic to a less dynamic state, and negatively regulates DSB formation. We propose a model in which Polo-like kinases recognize crossover designation and phosphorylate SYP-4 thereby stabilizing the SC and making chromosomes less permissive for further DSB formation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Roturas del ADN de Doble Cadena , Retroalimentación Fisiológica , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Fosforilación
15.
RNA ; 23(4): 504-520, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28031481

RESUMEN

Piwi proteins utilize small RNAs (piRNAs) to recognize target transcripts such as transposable elements (TE). However, extensive piRNA sequence diversity also suggests that Piwi/piRNA complexes interact with many transcripts beyond TEs. To determine Piwi target RNAs, we used ribonucleoprotein-immunoprecipitation (RIP) and cross-linking and immunoprecipitation (CLIP) to identify thousands of transcripts associated with the Piwi proteins XIWI and XILI (Piwi-protein-associated transcripts, PATs) from early stage oocytes of X. laevis and X. tropicalis Most PATs associate with both XIWI and XILI and include transcripts of developmentally important proteins in oogenesis and embryogenesis. Only a minor fraction of PATs in both frog species displayed near perfect matches to piRNAs. Since predicting imperfect pairing between all piRNAs and target RNAs remains intractable, we instead determined that PAT read counts correlate well with the lengths and expression levels of transcripts, features that have also been observed for oocyte mRNAs associated with Drosophila Piwi proteins. We used an in vitro assay with exogenous RNA to confirm that XIWI associates with RNAs in a length- and concentration-dependent manner. In this assay, noncoding transcripts with many perfectly matched antisense piRNAs were unstable, whereas coding transcripts with matching piRNAs were stable, consistent with emerging evidence that Piwi proteins both promote the turnover of TEs and other RNAs, and may also regulate mRNA localization and translation. Our study suggests that Piwi proteins play multiple roles in germ cells and establishes a tractable vertebrate system to study the role of Piwi proteins in transcript regulation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Oocitos/metabolismo , ARN Interferente Pequeño/genética , Transcriptoma , Proteínas de Xenopus/genética , Xenopus/genética , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Bioensayo , Elementos Transponibles de ADN , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Desarrollo Embrionario/genética , Femenino , Oocitos/crecimiento & desarrollo , Oogénesis/genética , Filogenia , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Xenopus/clasificación , Xenopus/crecimiento & desarrollo , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
16.
Open Biol ; 6(4): 150218, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27248654

RESUMEN

Endocytosis and local protein synthesis (LPS) act coordinately to mediate the chemotropic responses of axons, but the link between these two processes is poorly understood. The endosomal sorting complex required for transport (ESCRT) is a key regulator of cargo sorting in the endocytic pathway, and here we have investigated the role of ESCRT-II, a critical ESCRT component, in Xenopus retinal ganglion cell (RGC) axons. We show that ESCRT-II is present in RGC axonal growth cones (GCs) where it co-localizes with endocytic vesicle GTPases and, unexpectedly, with the Netrin-1 receptor, deleted in colorectal cancer (DCC). ESCRT-II knockdown (KD) decreases endocytosis and, strikingly, reduces DCC in GCs and leads to axon growth and guidance defects. ESCRT-II-depleted axons fail to turn in response to a Netrin-1 gradient in vitro and many axons fail to exit the eye in vivo These defects, similar to Netrin-1/DCC loss-of-function phenotypes, can be rescued in whole (in vitro) or in part (in vivo) by expressing DCC. In addition, ESCRT-II KD impairs LPS in GCs and live imaging reveals that ESCRT-II transports mRNAs in axons. Collectively, our results show that the ESCRT-II-mediated endocytic pathway regulates both DCC and LPS in the axonal compartment and suggest that ESCRT-II aids gradient sensing in GCs by coupling endocytosis to LPS.


Asunto(s)
Axones/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Biosíntesis de Proteínas , Receptores de Superficie Celular/metabolismo , Retina/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Axones/efectos de los fármacos , Receptor DCC , Endocitosis/efectos de los fármacos , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Técnicas de Silenciamiento del Gen , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Factores de Crecimiento Nervioso/farmacología , Netrina-1 , Fenotipo , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular/genética , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Proteínas Supresoras de Tumor/farmacología , Proteínas de Xenopus/genética , Xenopus laevis
17.
Cell Rep ; 15(8): 1624-33, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27184843

RESUMEN

Centromeric transcription is widely conserved; however, it is not clear what role centromere transcription plays during mitosis. Here, I find that centromeres are transcribed in Xenopus egg extracts into a long noncoding RNA (lncRNA; cen-RNA) that localizes to mitotic centromeres, chromatin, and spindles. cen-RNAs bind to the chromosomal passenger complex (CPC) in vitro and in vivo. Blocking transcription or antisense inhibition of cen-RNA leads to a reduction of CPC localization to the inner centromere and misregulation of CPC component Aurora-B activation independently of known centromere recruitment pathways. Additionally, transcription is required for normal bipolar attachment of kinetochores to the mitotic spindle, consistent with a role for cen-RNA in CPC regulation. This work demonstrates that cen-RNAs promote normal kinetochore function through regulation of the localization and activation of the CPC and confirm that lncRNAs are components of the centromere.


Asunto(s)
Aurora Quinasa B/metabolismo , Centrómero/genética , Transcripción Genética , Animales , Extractos Celulares , Centrómero/metabolismo , Cromatina/metabolismo , Activación Enzimática , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Óvulo/metabolismo , Transporte de Proteínas , ARN/metabolismo , ARN sin Sentido/metabolismo , Xenopus laevis
18.
Methods Mol Biol ; 1413: 303-24, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27193857

RESUMEN

RNAs associate with the mitotic spindle in a variety of organisms, where they can spatially regulate protein production, ensure their proper segregation during cell division, or perform translation-independent roles in spindle formation. The identification of spindle-associated RNAs is an important first step in understanding the biological consequences of this phenomenon. In this chapter, we describe a method to use Xenopus laevis egg extracts to assemble and isolate mitotic spindles and to identify the spindle-associated RNAs. The method described here can be used in combination with immunodepletions, the addition of inhibitors, or other perturbations to investigate factors that affect RNA localization to the spindle. Finally, we describe a method to assess the consequences of ablating RNA in the extract on spindle formation.


Asunto(s)
Mitosis , ARN/genética , ARN/metabolismo , Huso Acromático/metabolismo , Transcripción Genética , Animales , Extractos Celulares , Biología Computacional/métodos , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Microscopía Fluorescente/métodos , Mitosis/genética , Oocitos/metabolismo , Transporte de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Ribonucleasa Pancreática/metabolismo , Tubulina (Proteína)/metabolismo , Xenopus laevis
19.
Elife ; 5: e12039, 2016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-26920220

RESUMEN

Asymmetric disassembly of the synaptonemal complex (SC) is crucial for proper meiotic chromosome segregation. However, the signaling mechanisms that directly regulate this process are poorly understood. Here we show that the mammalian Rho GEF homolog, ECT-2, functions through the conserved RAS/ERK MAP kinase signaling pathway in the C. elegans germline to regulate the disassembly of SC proteins. We find that SYP-2, a SC central region component, is a potential target for MPK-1-mediated phosphorylation and that constitutively phosphorylated SYP-2 impairs the disassembly of SC proteins from chromosomal domains referred to as the long arms of the bivalents. Inactivation of MAP kinase at late pachytene is critical for timely disassembly of the SC proteins from the long arms, and is dependent on the crossover (CO) promoting factors ZHP-3/RNF212/Zip3 and COSA-1/CNTD1. We propose that the conserved MAP kinase pathway coordinates CO designation with the disassembly of SC proteins to ensure accurate chromosome segregation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Segregación Cromosómica , Intercambio Genético , Factores de Intercambio de Guanina Nucleótido/metabolismo , Sistema de Señalización de MAP Quinasas , Meiosis , Procesamiento Proteico-Postraduccional , Complejo Sinaptonémico/metabolismo , Animales , Caenorhabditis elegans , Línea Celular , Proteína Quinasa 1 Activada por Mitógenos/metabolismo
20.
Cell Mol Life Sci ; 73(1): 79-94, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26433683

RESUMEN

The endoplasmic reticulum (ER) is a large, dynamic structure that serves many roles in the cell including calcium storage, protein synthesis and lipid metabolism. The diverse functions of the ER are performed by distinct domains; consisting of tubules, sheets and the nuclear envelope. Several proteins that contribute to the overall architecture and dynamics of the ER have been identified, but many questions remain as to how the ER changes shape in response to cellular cues, cell type, cell cycle state and during development of the organism. Here we discuss what is known about the dynamics of the ER, what questions remain, and how coordinated responses add to the layers of regulation in this dynamic organelle.


Asunto(s)
Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Animales , Calcio/metabolismo , Retículo Endoplásmico/química , Fertilización , Humanos , Metabolismo de los Lípidos , Mitosis , Biosíntesis de Proteínas , Pliegue de Proteína , Proteínas/química , Proteínas/metabolismo , Transducción de Señal , Respuesta de Proteína Desplegada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA