RESUMEN
In type 1 diabetes (T1D), the immune system mistakenly attacks the pancreatic islet ß cells resulting in the loss of insulin secretion. Insulin-replacement therapy developed more than a century ago provided means to manage the symptoms of diabetes without addressing the root cause of the disease-the faulty immune system. A healthy immune system has built-in mechanisms to limit unwanted, excessive immune activation and prevents damages to self-tissues. These immune self-tolerance mechanisms are often impaired in autoimmune patients including those with T1Ds. Understanding how immune self-tolerance is broken in patients with T1D can inform the design of new curative therapies that correct the immune defects. In this paper, we will summarize the mechanisms of immune tolerance, review their relevance to T1Ds, and discuss novel therapeutic approaches to rebalance the immune system for the treatment of T1Ds.
RESUMEN
In November 2022, teplizumab became the first drug approved to delay the course of any autoimmune disease and to change the course of type 1 diabetes (T1D) since the discovery of insulin. The path to its approval took more than 30 years with both successes and failures along the way that would have normally led to its abandonment in other circumstances. Development of the drug was based on studies in preclinical models and parallels efforts in transplantation. From a series of innovative adaptations in response to issues related to adverse events and immunogenicity, humanized Fc receptors (FcR) nonbinding antibodies were developed with improved clinical outcomes and safety as well as new mechanisms. Importantly, as a result of these developments, teplizumab has been able to achieve efficacy over extended periods of time without global immune suppression. The approval of teplizumab represents a significant first step toward achieving escape from T1D and, in the future, reversal of the disease.
RESUMEN
Insulin is a central autoantigen in the pathogenesis of T1D, and thymic epithelial cell expression of insulin under the control of the Autoimmune Regulator (Aire) is thought to be a key component of maintaining tolerance to insulin. In spite of this general working model, direct detection of this thymic selection on insulin-specific T cells has been somewhat elusive. Here, we used a combination of highly sensitive T cell receptor transgenic models for detecting thymic selection and sorting and sequencing of Insulin-specific CD4+ T cells from Aire-deficient mice as a strategy to further define their selection. This analysis revealed a number of unique t cell receptor (TCR) clones in Aire-deficient hosts with high affinity for insulin/major histocompatibility complex (MHC) ligands. We then modeled the thymic selection of one of these clones in Aire-deficient versus wild-type hosts and found that this model clone could escape thymic negative selection in the absence of thymic Aire. Together, these results suggest that thymic expression of insulin plays a key role in trimming and removing high-affinity insulin-specific T cells from the repertoire to help promote tolerance.
Asunto(s)
Proteína AIRE , Insulina , Receptores de Antígenos de Linfocitos T , Timo , Animales , Ratones , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Células Clonales , Tolerancia Inmunológica , Insulina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Timo/inmunología , Timo/metabolismo , Timo/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genéticaRESUMEN
Engineered regulatory T (Treg) cells have emerged as precision therapeutics aimed at inducing immune tolerance while reducing the risks associated with generalized immunosuppression. This Viewpoint highlights the opportunities and challenges for engineered Treg cell therapies in treating autoimmune and other inflammatory diseases.
Asunto(s)
Enfermedades Autoinmunes , Linfocitos T Reguladores , Humanos , Tolerancia Inmunológica , Terapia de InmunosupresiónRESUMEN
Regulatory T (Treg) cells are essential for maintaining peripheral tolerance, preventing autoimmunity, and limiting chronic inflammatory diseases. This small CD4+ T cell population can develop in the thymus and in the peripheral tissues of the immune system through the expression of an epigenetically stabilized transcription factor, FOXP3. Treg cells mediate their tolerogenic effects using multiple modes of action, including the production of inhibitory cytokines, cytokine starvation of T effector (e.g., IL-2), Teff suppression by metabolic disruption, and modulation of antigen-presenting cell maturation or function. These activities together result in the broad control of various immune cell subsets, leading to the suppression of cell activation/expansion and effector functions. Moreover, these cells can facilitate tissue repair to complement their suppressive effects. In recent years, there has been an effort to harness Treg cells as a new therapeutic approach to treat autoimmune and other immunological diseases and, importantly, to re-establish tolerance. Recent synthetic biological advances have enabled the cells to be genetically engineered to achieve tolerance and antigen-specific immune suppression by increasing their specific activity, stability, and efficacy. These cells are now being tested in clinical trials. In this review, we highlight both the advances and the challenges in this arena, focusing on the efforts to develop this new pillar of medicine to treat and cure a variety of diseases.
Asunto(s)
Enfermedades del Sistema Inmune , Linfocitos T Reguladores , Humanos , Linfocitos T CD4-Positivos , Tolerancia Inmunológica , Terapia de Inmunosupresión , Enfermedades del Sistema Inmune/metabolismo , Citocinas/metabolismoRESUMEN
Chimeric antigen receptors (CARs) repurpose natural signaling components to retarget T cells to refractory cancers but have shown limited efficacy in persistent, recurrent malignancies. Here, we introduce "CAR Pooling," a multiplexed approach to rapidly identify CAR designs with clinical potential. Forty CARs with signaling domains derived from a range of immune cell lineages were evaluated in pooled assays for their ability to stimulate critical T cell effector functions during repetitive stimulation that mimics long-term tumor antigen exposure. Several domains were identified from the tumor necrosis factor (TNF) receptor family that have been primarily associated with B cells. CD40 enhanced proliferation, whereas B cell-activating factor receptor (BAFF-R) and transmembrane activator and CAML interactor (TACI) promoted cytotoxicity. These functions were enhanced relative to clinical benchmarks after prolonged antigen stimulation, and CAR T cell signaling through these domains fell into distinct states of memory, cytotoxicity, and metabolism. BAFF-R CAR T cells were enriched for a highly cytotoxic transcriptional signature previously associated with positive clinical outcomes. We also observed that replacing the 4-1BB intracellular signaling domain with the BAFF-R signaling domain in a clinically validated B cell maturation antigen (BCMA)-specific CAR resulted in enhanced activity in a xenotransplant model of multiple myeloma. Together, these results show that CAR Pooling is a general approach for rapid exploration of CAR architecture and activity to improve the efficacy of CAR T cell therapies.
Asunto(s)
Recurrencia Local de Neoplasia , Receptores Quiméricos de Antígenos , Humanos , Recurrencia Local de Neoplasia/metabolismo , Antígeno de Maduración de Linfocitos B , Receptores Quiméricos de Antígenos/metabolismo , Inmunoterapia Adoptiva/métodos , Linfocitos T , Inmunoterapia , Transducción de SeñalRESUMEN
Low-dose human interleukin-2 (hIL-2) treatment is used clinically to treat autoimmune disorders due to the cytokine's preferential expansion of immunosuppressive regulatory T cells (Tregs). However, off-target immune cell activation and short serum half-life limit the clinical potential of IL-2 treatment. Recent work showed that complexes comprising hIL-2 and the anti-hIL-2 antibody F5111 overcome these limitations by preferentially stimulating Tregs over immune effector cells. Although promising, therapeutic translation of this approach is complicated by the need to optimize dosing ratios and by the instability of the cytokine/antibody complex. We leverage structural insights to engineer a single-chain hIL-2/F5111 antibody fusion protein, termed F5111 immunocytokine (IC), which potently and selectively activates and expands Tregs. F5111 IC confers protection in mouse models of colitis and checkpoint inhibitor-induced diabetes mellitus. These results provide a roadmap for IC design and establish a Treg-biased immunotherapy that could be clinically translated for autoimmune disease treatment.
Asunto(s)
Enfermedades Autoinmunes , Interleucina-2 , Ratones , Animales , Humanos , Linfocitos T Reguladores , Anticuerpos/metabolismo , Citocinas/metabolismoRESUMEN
Despite advances in the field, chronic graft-versus-host-disease (cGVHD) remains a leading cause of morbidity and mortality following allogenic hematopoietic stem cell transplant. Because treatment options remain limited, we tested efficacy of anticancer, chromatin-modifying enzyme inhibitors in a clinically relevant murine model of cGVHD with bronchiolitis obliterans (BO). We observed that the novel enhancer of zeste homolog 2 (EZH2) inhibitor JQ5 and the BET-bromodomain inhibitor JQ1 each improved pulmonary function; impaired the germinal center (GC) reaction, a prerequisite in cGVHD/BO pathogenesis; and JQ5 reduced EZH2-mediated H3K27me3 in donor T cells. Using conditional EZH2 knockout donor cells, we demonstrated that EZH2 is obligatory for the initiation of cGVHD/BO. In a sclerodermatous cGVHD model, JQ5 reduced the severity of cutaneous lesions. To determine how the 2 drugs could lead to the same physiological improvements while targeting unique epigenetic processes, we analyzed the transcriptomes of splenic GCB cells (GCBs) from transplanted mice treated with either drug. Multiple inflammatory and signaling pathways enriched in cGVHD/BO GCBs were reduced by each drug. GCBs from JQ5- but not JQ1-treated mice were enriched for proproliferative pathways also seen in GCBs from bone marrow-only transplanted mice, likely reflecting their underlying biology in the unperturbed state. In conjunction with in vivo data, these insights led us to conclude that epigenetic targeting of the GC is a viable clinical approach for the treatment of cGVHD, and that the EZH2 inhibitor JQ5 and the BET-bromodomain inhibitor JQ1 demonstrated clinical potential for EZH2i and BETi in patients with cGVHD/BO.
Asunto(s)
Bronquiolitis Obliterante , Proteína Potenciadora del Homólogo Zeste 2 , Centro Germinal , Enfermedad Injerto contra Huésped , Proteínas , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Linfocitos B/patología , Bronquiolitis Obliterante/genética , Bronquiolitis Obliterante/metabolismo , Bronquiolitis Obliterante/patología , Enfermedad Crónica , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Inhibidores Enzimáticos/farmacología , Centro Germinal/efectos de los fármacos , Centro Germinal/patología , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/patología , Humanos , Ratones , Proteínas/metabolismo , TranscriptomaRESUMEN
We report on manufacturing outcomes for 41 autologous polyclonal regulatory T cell (PolyTreg) products for 7 different Phase 1 clinical trials over a 10-year period (2011-2020). Data on patient characteristics, manufacturing parameters, and manufacturing outcomes were collected from manufacturing batch records and entered into a secure database. Overall, 88% (36/41) of PolyTreg products met release criteria and 83% (34/41) of products were successfully infused into patients. Of the 7 not infused, 5 failed release criteria, and 2 were not infused because the patient became ineligible due to a change in clinical status. The median fold expansion over the 14-day manufacturing process was 434.8 -fold (range 29.8-2,232), resulting in a median post-expansion cell count of 1,841 x 106 (range 56.9-16,179 x 106). The main correlate of post-expansion cell number was starting cell number, which positively correlates with absolute circulating Treg cell count. Other parameters, including date of PolyTreg production, patient sex, and patient age did not significantly correlate with fold expansion of Treg during product manufacturing. In conclusion, PolyTreg manufacturing outcomes are consistent across trials and dates of production.
Asunto(s)
Productos Biológicos , Tratamiento Basado en Trasplante de Células y Tejidos , Seguridad de Productos para el Consumidor , Linfocitos T Reguladores , Productos Biológicos/normas , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/normas , Seguridad de Productos para el Consumidor/normas , Humanos , Trasplante Autólogo/métodos , Trasplante Autólogo/normasRESUMEN
Infusion of regulatory T cells (Tregs) engineered with a chimeric antigen receptor (CAR) targeting donor-derived human leukocyte antigen (HLA) is a promising strategy to promote transplant tolerance. Here, we describe an anti-HLA-A2 CAR (A2-CAR) generated by grafting the complementarity-determining regions (CDRs) of a human monoclonal anti-HLA-A2 antibody into the framework regions of the Herceptin 4D5 single-chain variable fragment and fusing it with a CD28-ζ signaling domain. The CDR-grafted A2-CAR maintained the specificity of the original antibody. We then generated HLA-A2 mono-specific human CAR Tregs either by deleting the endogenous T-cell receptor (TCR) via CRISPR/Cas9 and introducing the A2-CAR using lentiviral transduction or by directly integrating the CAR construct into the TCR alpha constant locus using homology-directed repair. These A2-CAR+TCRdeficient human Tregs maintained both Treg phenotype and function in vitro. Moreover, they selectively accumulated in HLA-A2-expressing islets transplanted from either HLA-A2 transgenic mice or deceased human donors. A2-CAR+TCRdeficient Tregs did not impair the function of these HLA-A2+ islets, whereas similarly engineered A2-CAR+TCRdeficientCD4+ conventional T cells rejected the islets in less than 2 weeks. A2-CAR+TCRdeficient Tregs delayed graft-versus-host disease only in the presence of HLA-A2, expressed either by co-transferred peripheral blood mononuclear cells or by the recipient mice. Altogether, we demonstrate that genome-engineered mono-antigen-specific A2-CAR Tregs localize to HLA-A2-expressing grafts and exhibit antigen-dependent in vivo suppression, independent of TCR expression. These approaches may be applied towards developing precision Treg cell therapies for transplant tolerance.
Asunto(s)
Anticuerpos/metabolismo , Antígeno HLA-A2/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T Reguladores/trasplante , Tolerancia al Trasplante , Animales , Ingeniería Celular , Femenino , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/metabolismo , Humanos , Inmunoterapia Adoptiva , Masculino , Ratones , Ratones Endogámicos NOD , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/genética , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismoRESUMEN
Recent advances in cancer immunotherapy have completely revolutionized cancer treatment strategies. Nonetheless, the increasing incidence of immune-related adverse events (irAEs) is now limiting the overall benefits of these treatments. irAEs are well-recognized side effects of some of the most effective cancer immunotherapy agents, including antibody blockade of the cytotoxic T-lymphocyte-associated protein 4 and programmed death protein 1/programmed-death ligand 1 pathways. To develop an action plan on the key elements needed to unravel and understand the key mechanisms driving irAEs, the Society for Immunotherapy for Cancer and the American Association for Cancer Research partnered to bring together research and clinical experts in cancer immunotherapy, autoimmunity, immune regulation, genetics and informatics who are investigating irAEs using animal models, clinical data and patient specimens to discuss current strategies and identify the critical next steps needed to create breakthroughs in our understanding of these toxicities. The genetic and environmental risk factors, immune cell subsets and other key immunological mediators and the unique clinical presentations of irAEs across the different organ systems were the foundation for identifying key opportunities and future directions described in this report. These include the pressing need for significantly improved preclinical model systems, broader collection of biospecimens with standardized collection and clinical annotation made available for research and integration of electronic health record and multiomic data with harmonized and standardized methods, definitions and terminologies to further our understanding of irAE pathogenesis. Based on these needs, this report makes a set of recommendations to advance our understanding of irAE mechanisms, which will be crucial to prevent their occurrence and improve their treatment.
Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/tratamiento farmacológico , Inmunoterapia/métodos , Animales , Humanos , RatonesRESUMEN
BACKGROUND: Type 1 diabetes results from autoimmune-mediated destruction of ß cells. The tyrosine kinase inhibitor imatinib might affect relevant immunological and metabolic pathways, and preclinical studies show that it reverses and prevents diabetes. Our aim was to evaluate the safety and efficacy of imatinib in preserving ß-cell function in patients with recent-onset type 1 diabetes. METHODS: We did a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Patients with recent-onset type 1 diabetes (<100 days from diagnosis), aged 18-45 years, positive for at least one type of diabetes-associated autoantibody, and with a peak stimulated C-peptide of greater than 0·2 nmol L-1 on a mixed meal tolerance test (MMTT) were enrolled from nine medical centres in the USA (n=8) and Australia (n=1). Participants were randomly assigned (2:1) to receive either 400 mg imatinib mesylate (4 × 100 mg film-coated tablets per day) or matching placebo for 26 weeks via a computer-generated blocked randomisation scheme stratified by centre. Treatment assignments were masked for all participants and study personnel except pharmacists at each clinical site. The primary endpoint was the difference in the area under the curve (AUC) mean for C-peptide response in the first 2 h of an MMTT at 12 months in the imatinib group versus the placebo group, with use of an ANCOVA model adjusting for sex, baseline age, and baseline C-peptide, with further observation up to 24 months. The primary analysis was by intention to treat (ITT). Safety was assessed in all randomly assigned participants. This study is registered with ClinicalTrials.gov, NCT01781975 (completed). FINDINGS: Patients were screened and enrolled between Feb 12, 2014, and May 19, 2016. 45 patients were assigned to receive imatinib and 22 to receive placebo. After withdrawals, 43 participants in the imatinib group and 21 in the placebo group were included in the primary ITT analysis at 12 months. The study met its primary endpoint: the adjusted mean difference in 2-h C-peptide AUC at 12 months for imatinib versus placebo treatment was 0·095 (90% CI -0·003 to 0·191; p=0·048, one-tailed test). This effect was not sustained out to 24 months. During the 24-month follow-up, 32 (71%) of 45 participants who received imatinib had a grade 2 severity or worse adverse event, compared with 13 (59%) of 22 participants who received placebo. The most common adverse events (grade 2 severity or worse) that differed between the groups were gastrointestinal issues (six [13%] participants in the imatinib group, primarily nausea, and none in the placebo group) and additional laboratory investigations (ten [22%] participants in the imatinib group and two [9%] in the placebo group). Per the trial protocol, 17 (38%) participants in the imatinib group required a temporary modification in drug dosing and six (13%) permanently discontinued imatinib due to adverse events; five (23%) participants in the placebo group had temporary modifications in dosing and none had a permanent discontinuation due to adverse events. INTERPRETATION: A 26-week course of imatinib preserved ß-cell function at 12 months in adults with recent-onset type 1 diabetes. Imatinib might offer a novel means to alter the course of type 1 diabetes. Future considerations are defining ideal dose and duration of therapy, safety and efficacy in children, combination use with a complimentary drug, and ability of imatinib to delay or prevent progression to diabetes in an at-risk population; however, careful monitoring for possible toxicities is required. FUNDING: Juvenile Research Diabetes Foundation.
Asunto(s)
Diabetes Mellitus Tipo 1/tratamiento farmacológico , Mesilato de Imatinib/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Adolescente , Adulto , Biomarcadores/análisis , Glucemia/análisis , Diabetes Mellitus Tipo 1/patología , Método Doble Ciego , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Adulto JovenRESUMEN
BACKGROUNDA previous phase I study showed that the infusion of autologous Tregs expanded ex vivo into patients with recent-onset type 1 diabetes (T1D) had an excellent safety profile. However, the majority of the infused Tregs were undetectable in the peripheral blood 3 months postinfusion (Treg-T1D trial). Therefore, we conducted a phase I study (TILT trial) combining polyclonal Tregs and low-dose IL-2, shown to enhance Treg survival and expansion, and assessed the impact over time on Treg populations and other immune cells.METHODSPatients with T1D were treated with a single infusion of autologous polyclonal Tregs followed by one or two 5-day courses of recombinant human low-dose IL-2 (ld-IL-2). Flow cytometry, cytometry by time of flight, and 10x Genomics single-cell RNA-Seq were used to follow the distinct immune cell populations' phenotypes over time.RESULTSMultiparametric analysis revealed that the combination therapy led to an increase in the number of infused and endogenous Tregs but also resulted in a substantial increase from baseline in a subset of activated NK, mucosal associated invariant T, and clonal CD8+ T cell populations.CONCLUSIONThese data support the hypothesis that ld-IL-2 expands exogenously administered Tregs but also can expand cytotoxic cells. These results have important implications for the use of a combination of ld-IL-2 and Tregs for the treatment of autoimmune diseases with preexisting active immunity.TRIAL REGISTRATIONClinicalTrials.gov NCT01210664 (Treg-T1D trial), NCT02772679 (TILT trial).FUNDINGSean N. Parker Autoimmune Research Laboratory Fund, National Center for Research Resources.
Asunto(s)
Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/terapia , Inmunoterapia Adoptiva , Interleucina-2/administración & dosificación , Linfocitos T Reguladores/trasplante , Adulto , Péptido C/sangre , Linfocitos T CD8-positivos , Supervivencia Celular , Terapia Combinada , Diabetes Mellitus Tipo 1/inmunología , Femenino , Hemoglobina Glucada/metabolismo , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Interleucina-2/efectos adversos , Recuento de Linfocitos , Masculino , Células T Asesinas Naturales , Proteínas Recombinantes/administración & dosificación , Factores de Tiempo , Transcriptoma , Adulto JovenRESUMEN
Type 1 diabetes (T1D) is an autoimmune disease in which T cells attack and destroy the insulin-producing ß cells in the pancreatic islets. Genetic and environmental factors increase T1D risk by compromising immune homeostasis. Although the discovery and use of insulin have transformed T1D treatment, insulin therapy does not change the underlying disease or fully prevent complications. Over the past two decades, research has identified multiple immune cell types and soluble factors that destroy insulin-producing ß cells. These insights into disease pathogenesis have enabled the development of therapies to prevent and modify T1D. In this review, we highlight the key events that initiate and sustain pancreatic islet inflammation in T1D, the current state of the immunological therapies, and their advantages for the treatment of T1D.
Asunto(s)
Diabetes Mellitus Tipo 1/terapia , Factores Inmunológicos/uso terapéutico , Inmunoterapia , Inmunidad Adaptativa , Animales , Antiinflamatorios/uso terapéutico , Autoanticuerpos/sangre , Linfocitos B/inmunología , Citocinas/inmunología , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Humanos , Inmunidad Innata , Células Secretoras de Insulina/fisiología , Interleucina-2/uso terapéutico , Linfocitos T/inmunologíaRESUMEN
Anti-CD19 chimeric antigen receptor (CD19-CAR)-engineered T cells are approved therapeutics for malignancies. The impact of the hinge domain (HD) and the transmembrane domain (TMD) between the extracellular antigen-targeting CARs and the intracellular signaling modalities of CARs has not been systemically studied. In this study, a series of 19-CARs differing only by their HD (CD8, CD28, or IgG4) and TMD (CD8 or CD28) was generated. CARs containing a CD28-TMD, but not a CD8-TMD, formed heterodimers with the endogenous CD28 in human T cells, as shown by co-immunoprecipitation and CAR-dependent proliferation of anti-CD28 stimulation. This dimerization was dependent on polar amino acids in the CD28-TMD and was more efficient with CARs containing CD28 or CD8 HD than IgG4-HD. The CD28-CAR heterodimers did not respond to CD80 and CD86 stimulation but had a significantly reduced CD28 cell-surface expression. These data unveiled a fundamental difference between CD28-TMD and CD8-TMD and indicated that CD28-TMD can modulate CAR T-cell activities by engaging endogenous partners.
Asunto(s)
Antígenos CD28/inmunología , Dominios Proteicos/inmunología , Receptores Quiméricos de Antígenos/inmunología , Antígenos CD19/inmunología , Dimerización , Humanos , Activación de Linfocitos/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunologíaRESUMEN
Wei and colleagues showcase a genetic mouse model of immune-mediated myocarditis that shares homology with immune checkpoint inhibitor (CPI)-induced myocarditis in patients with cancer. They demonstrate that abatacept (CTLA4-Ig) limits cardiac toxicity in the mouse model and, thus, may ameliorate the CPI-induced myocarditis in patients with cancer while potentially maintaining antitumor activity.See related article by Wei et al., p. 614.
Asunto(s)
Miocarditis , Neoplasias , Animales , Modelos Animales de Enfermedad , Humanos , Inhibidores de Puntos de Control Inmunológico , Ratones , Miocarditis/inducido químicamente , Miocarditis/tratamiento farmacológico , Neoplasias/tratamiento farmacológicoRESUMEN
Cancer immunotherapies can successfully activate immune responses towards certain tumors. However, this can also result in the development of treatment-induced immune-related adverse events (irAEs) in multiple tissues. Growing evidence suggests that cytokine production in response to these therapeutics potentiates the development of irAEs and may have predictive value as biomarkers for irAE occurrence. In addition, therapeutic agents that inhibit cytokine activity can limit the severity of irAEs, and their use is being tested in the clinical setting. This review provides an in-depth analysis of strategies to uncouple the cytokine response, that precipitates irAEs following cancer immunotherapies, from the benefit gained in promoting antitumor immunity.
Asunto(s)
Citocinas , Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inmunoterapia/efectos adversos , Neoplasias/tratamiento farmacológicoRESUMEN
We present an integrated analysis of the clinical measurements, immune cells, and plasma multi-omics of 139 COVID-19 patients representing all levels of disease severity, from serial blood draws collected during the first week of infection following diagnosis. We identify a major shift between mild and moderate disease, at which point elevated inflammatory signaling is accompanied by the loss of specific classes of metabolites and metabolic processes. Within this stressed plasma environment at moderate disease, multiple unusual immune cell phenotypes emerge and amplify with increasing disease severity. We condensed over 120,000 immune features into a single axis to capture how different immune cell classes coordinate in response to SARS-CoV-2. This immune-response axis independently aligns with the major plasma composition changes, with clinical metrics of blood clotting, and with the sharp transition between mild and moderate disease. This study suggests that moderate disease may provide the most effective setting for therapeutic intervention.
Asunto(s)
COVID-19 , Genómica , RNA-Seq , SARS-CoV-2 , Análisis de la Célula Individual , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/sangre , COVID-19/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Índice de Severidad de la EnfermedadRESUMEN
Patients with cancer with liver metastasis demonstrate significantly worse outcomes than those without liver metastasis when treated with anti-PD-1 immunotherapy. The mechanism of liver metastases-induced reduction in systemic antitumor immunity is unclear. Using a dual-tumor immunocompetent mouse model, we found that the immune response to tumor antigen presence within the liver led to the systemic suppression of antitumor immunity. The immune suppression was antigen specific and associated with the coordinated activation of regulatory T cells (Tregs) and modulation of intratumoral CD11b+ monocytes. The dysfunctional immune state could not be reversed by anti-PD-1 monotherapy unless Treg cells were depleted (anti-CTLA-4) or destabilized (EZH2 inhibitor). Thus, this study provides a mechanistic understanding and rationale for adding Treg and CD11b+ monocyte targeting agents in combination with anti-PD-1 to treat patients with cancer with liver metastasis.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Linfocitos T Reguladores/inmunología , Escape del Tumor/efectos de los fármacos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Antígeno CD11b/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/metabolismo , Línea Celular Tumoral/trasplante , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/inmunología , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/secundario , Depleción Linfocítica/métodos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Masculino , Ratones , Ratones Transgénicos , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunologíaRESUMEN
Type 1 diabetes mellitus results from autoimmune destruction of pancreatic ß cells. Insulin treatment is often inadequate in preventing devastating complications. Replacing ß cells using stem cell-derived islets while fostering immune tolerance, exemplified in Yoshihara et al., holds the promise of a curative therapy for this disease.