Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Dis Model Mech ; 16(2)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36621776

RESUMEN

Somatic mutations occur frequently and can arise during embryogenesis, resulting in the formation of a patchwork of mutant clones. Such mosaicism has been implicated in a broad range of developmental anomalies; however, their etiology is poorly understood. Patients carrying a common somatic oncogenic mutation in either PIK3CA or AKT1 can present with disproportionally large digits or limbs. How mutant clones, carrying an oncogenic mutation that often drives unchecked proliferation, can lead to controlled and coordinated overgrowth is unknown. We use zebrafish to explore the growth dynamics of oncogenic clones during development. Here, in a subset of clones, we observed a local increase in proportion of the fin skeleton closely resembling overgrowth phenotypes in patients. We unravel the cellular and developmental mechanisms of these overgrowths, and pinpoint the cell type and timing of clonal expansion. Coordinated overgrowth is associated with rapid clone expansion during early pre-chondrogenic phase of bone development, inducing a heterochronic shift that drives the change in bone size. Our study details how development integrates and translates growth potential of oncogenic clones, thereby shaping the phenotypic consequences of somatic mutations.


Asunto(s)
Mosaicismo , Pez Cebra , Animales , Mutación/genética , Pez Cebra/genética , Fenotipo , Células Clonales
2.
Curr Biol ; 31(22): 5052-5061.e8, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34534441

RESUMEN

Changes to allometry, or the relative proportions of organs and tissues within organisms, is a common means for adaptive character change in evolution. However, little is understood about how relative size is specified during development and shaped during evolution. Here, through a phylogenomic analysis of genome-wide variation in 35 species of flying fishes and relatives, we identify genetic signatures in both coding and regulatory regions underlying the convergent evolution of increased paired fin size and aerial gliding behaviors. To refine our analysis, we intersected convergent phylogenomic signatures with mutants with altered fin size identified in distantly related zebrafish. Through these paired approaches, we identify a surprising role for an L-type amino acid transporter, lat4a, and the potassium channel, kcnh2a, in the regulation of fin proportion. We show that interaction between these genetic loci in zebrafish closely phenocopies the observed fin proportions of flying fishes. The congruence of experimental and phylogenomic findings point to conserved, non-canonical signaling integrating bioelectric cues and amino acid transport in the establishment of relative size in development and evolution.


Asunto(s)
Aletas de Animales , Pez Cebra , Aletas de Animales/fisiología , Animales , Evolución Biológica , Señales (Psicología) , Evolución Molecular , Peces/genética , Filogenia , Proteínas de Pez Cebra/metabolismo
3.
Development ; 142(17): 2888-93, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26253402

RESUMEN

The zebrafish caudal fin consists of repeated units of bony rays separated by soft interray tissue, an organization that must be faithfully re-established during fin regeneration. How and why regenerating rays respect ray-interray boundaries, thus extending only the existing bone, has remained unresolved. Here, we demonstrate that a retinoic acid (RA)-degrading niche is established by Cyp26a1 in the proximal basal epidermal layer that orchestrates ray-interray organization by spatially restricting osteoblasts. Disruption of this niche causes preosteoblasts to ignore ray-interray boundaries and to invade neighboring interrays where they form ectopic bone. Concomitantly, non-osteoblastic blastema cells and regenerating blood vessels spread into the interrays, resulting in overall disruption of ray-interray organization and irreversible inhibition of fin regeneration. The cyp26a1-expressing niche plays another important role during subsequent regenerative outgrowth, where it facilitates the Shha-promoted proliferation of osteoblasts. Finally, we show that the previously observed distal shift of ray bifurcations in regenerating fins upon RA treatment or amputation close to the bifurcation can be explained by inappropriate preosteoblast alignment and does not necessarily require putative changes in proximodistal information. Our findings uncover a mechanism regulating preosteoblast alignment and maintenance of ray-interray boundaries during fin regeneration.


Asunto(s)
Aletas de Animales/citología , Aletas de Animales/fisiología , Osteoblastos/metabolismo , Regeneración , Transducción de Señal , Tretinoina/metabolismo , Pez Cebra/fisiología , Aletas de Animales/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Epidermis/efectos de los fármacos , Epidermis/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Proteínas Hedgehog/metabolismo , Modelos Biológicos , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Regeneración/efectos de los fármacos , Ácido Retinoico 4-Hidroxilasa , Transducción de Señal/efectos de los fármacos , Proteínas de Pez Cebra/metabolismo
4.
Development ; 142(17): 2894-903, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26253409

RESUMEN

Zebrafish restore amputated fins by forming tissue-specific blastema cells that coordinately regenerate the lost structures. Fin amputation triggers the synthesis of several diffusible signaling factors that are required for regeneration, raising the question of how cell lineage-specific programs are protected from regenerative crosstalk between neighboring fin tissues. During fin regeneration, osteoblasts revert from a non-cycling, mature state to a cycling, preosteoblastic state to establish a pool of progenitors within the blastema. After several rounds of proliferation, preosteoblasts redifferentiate to produce new bone. Blastema formation and proliferation are driven by the continued synthesis of retinoic acid (RA). Here, we find that osteoblast dedifferentiation and redifferentiation are inhibited by RA signaling, and we uncover how the bone regenerative program is achieved against a background of massive RA synthesis. Stump osteoblasts manage to contribute to the blastema by upregulating expression of the RA-degrading enzyme cyp26b1. Redifferentiation is controlled by a presumptive gradient of RA, in which high RA levels towards the distal tip of the blastema suppress redifferentiation. We show that this might be achieved through a mechanism involving repression of Bmp signaling and promotion of Wnt/ß-catenin signaling. In turn, cyp26b1(+) fibroblast-derived blastema cells in the more proximal regenerate serve as a sink to reduce RA levels, thereby allowing differentiation of neighboring preosteoblasts. Our findings reveal a mechanism explaining how the osteoblast regenerative program is protected from adverse crosstalk with neighboring fibroblasts that advances our understanding of the regulation of bone repair by RA.


Asunto(s)
Aletas de Animales/citología , Aletas de Animales/fisiología , Desdiferenciación Celular , Osteoblastos/citología , Regeneración , Tretinoina/metabolismo , Pez Cebra/metabolismo , Animales , Matriz Ósea/metabolismo , Proliferación Celular , Sistema Enzimático del Citocromo P-450/metabolismo , Osteoblastos/metabolismo , Ácido Retinoico 4-Hidroxilasa , Transducción de Señal , Regulación hacia Arriba , Proteínas de Pez Cebra/metabolismo
5.
Cell Mol Life Sci ; 70(20): 3907-27, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23479131

RESUMEN

The ability to regenerate injured or lost body parts has been an age-old ambition of medical science. In contrast to humans, teleost fish and urodele amphibians can regrow almost any part of the body with seeming effortlessness. Retinoic acid is a molecule that has long been associated with these impressive regenerative capacities. The discovery 30 years ago that addition of retinoic acid to regenerating amphibian limbs causes "super-regeneration" initiated investigations into the presumptive roles of retinoic acid in regeneration of appendages and other organs. However, the evidence favoring or dismissing a role for endogenous retinoids in regeneration processes remained sparse and ambiguous. Now, the availability of genetic tools to manipulate and visualize the retinoic acid signaling pathway has opened up new routes to dissect its roles in regeneration. Here, we review the current understanding on endogenous functions of retinoic acid in regeneration and discuss key questions to be addressed in future research.


Asunto(s)
Regeneración , Transducción de Señal , Tretinoina/metabolismo , Aletas de Animales/metabolismo , Aletas de Animales/fisiología , Animales , Cuernos de Venado/metabolismo , Cuernos de Venado/fisiología , Proliferación Celular , Corazón/fisiología , Cristalino/metabolismo , Cristalino/fisiología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Receptores de Ácido Retinoico/metabolismo , Cola (estructura animal)/metabolismo , Cola (estructura animal)/fisiología , Pez Cebra/metabolismo , Pez Cebra/fisiología
6.
Development ; 139(1): 107-16, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22096078

RESUMEN

Adult teleosts rebuild amputated fins through a proliferation-dependent process called epimorphic regeneration, in which a blastema of cycling progenitor cells replaces the lost fin tissue. The genetic networks that control formation of blastema cells from formerly quiescent stump tissue and subsequent blastema function are still poorly understood. Here, we investigated the cellular and molecular consequences of genetically interfering with retinoic acid (RA) signaling for the formation of the zebrafish blastema. We show that RA signaling is upregulated within the first few hours after fin amputation in the stump mesenchyme, where it controls Fgf, Wnt/ß-catenin and Igf signaling. Genetic inhibition of the RA pathway at this stage blocks blastema formation by inhibiting cell cycle entry of stump cells and impairs the formation of the basal epidermal layer, a signaling center in the wound epidermis. In the established blastema, RA signaling remains active to ensure the survival of the highly proliferative blastemal population by controlling expression of the anti-apoptotic factor bcl2. In addition, RA signaling maintains blastema proliferation through the activation of growth-stimulatory signals mediated by Fgf and Wnt/ß-catenin signaling, as well as by reducing signaling through the growth-inhibitory non-canonical Wnt pathway. The endogenous roles of RA in adult vertebrate appendage regeneration are uncovered here for the first time. They provide a mechanistic framework to understand previous observations in salamanders that link endogenous sources of RA to the regeneration process itself and support the hypothesis that the RA signaling pathway is an essential component of vertebrate tissue regeneration.


Asunto(s)
Extremidades/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regeneración/fisiología , Transducción de Señal/genética , Células Madre/citología , Tretinoina/metabolismo , Pez Cebra/fisiología , Animales , Bromodesoxiuridina , Diferenciación Celular/fisiología , Proliferación Celular , Supervivencia Celular/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , Proteína Letal Asociada a bcl/metabolismo , beta Catenina
7.
Dev Cell ; 20(3): 397-404, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21397850

RESUMEN

Zebrafish heart regeneration occurs through the activation of cardiomyocyte proliferation in areas of trauma. Here, we show that within 3 hr of ventricular injury, the entire endocardium undergoes morphological changes and induces expression of the retinoic acid (RA)-synthesizing enzyme raldh2. By one day posttrauma, raldh2 expression becomes localized to endocardial cells at the injury site, an area that is supplemented with raldh2-expressing epicardial cells as cardiogenesis begins. Induced transgenic inhibition of RA receptors or expression of an RA-degrading enzyme blocked regenerative cardiomyocyte proliferation. Injured hearts of the ancient fish Polypterus senegalus also induced and maintained robust endocardial and epicardial raldh2 expression coincident with cardiomyocyte proliferation, whereas poorly regenerative infarcted murine hearts did not. Our findings reveal that the endocardium is a dynamic, injury-responsive source of RA in zebrafish, and indicate key roles for endocardial and epicardial cells in targeting RA synthesis to damaged heart tissue and promoting cardiomyocyte proliferation.


Asunto(s)
Endocardio/metabolismo , Corazón/fisiología , Pericardio/metabolismo , Regeneración/fisiología , Tretinoina/metabolismo , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Evolución Biológica , Proliferación Celular , Endocardio/citología , Endocardio/lesiones , Corazón/anatomía & histología , Ratones , Datos de Secuencia Molecular , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Pericardio/citología , Pericardio/lesiones , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo , Transducción de Señal/fisiología , Pez Cebra/anatomía & histología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
BMC Dev Biol ; 8: 98, 2008 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-18844994

RESUMEN

BACKGROUND: One of Darwin's chosen examples for his idea of sexual selection through female choice was the "sword", a colourful extension of the caudal fin of male swordtails of the genus Xiphophorus. Platyfish, also members of the genus Xiphophorus, are thought to have arisen from within the swordtails, but have secondarily lost the ability to develop a sword. The sustained increase of testosterone during sexual maturation initiates sword development in male swordtails. Addition of testosterone also induces sword-like fin extensions in some platyfish species, suggesting that the genetic interactions required for sword development may be dormant, rather than lost, within platyfish. Despite considerable interest in the evolution of the sword from a behavioural or evolutionary point of view, little is known about the developmental changes that resulted in the gain and secondary loss of the sword. Up-regulation of msxC had been shown to characterize the development of both swords and the gonopodium, a modified anal fin that serves as an intromittent organ, and prompted investigations of the regulatory mechanisms that control msxC and sword growth. RESULTS: By comparing both development and regeneration of caudal fins in swordtails and platyfish, we show that fgfr1 is strongly up-regulated in developing and regenerating sword and gonopodial rays. Characterization of the fin overgrowth mutant brushtail in a platyfish background confirmed that fin regeneration rates are correlated with the expression levels of fgfr1 and msxC. Moreover, brushtail re-awakens the dormant mechanisms of sword development in platyfish and activates fgfr1/msxC-signalling. Although both genes are co-expressed in scleroblasts, expression of msxC in the distal blastema may be independent of fgfr1. Known regulators of Fgf-signalling in teleost fins, fgf20a and fgf24, are transiently expressed only during regeneration and thus not likely to be required in developing swords. CONCLUSION: Our data suggest that Fgf-signalling is involved upstream of msxC in the development of the sword and gonopodium in male swordtails. Activation of a gene regulatory network that includes fgfr1 and msxC is positively correlated with fin ray growth rates and can be re-activated in platyfish to form small sword-like fin extensions. These findings point towards a disruption between the fgfr1/msxC network and its regulation by testosterone as a likely developmental cause for sword-loss in platyfish.


Asunto(s)
Tipificación del Cuerpo/genética , Ciprinodontiformes/embriología , Ciprinodontiformes/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/fisiología , Diferenciación Sexual/genética , Animales , Clonación Molecular , Ciprinodontiformes/anatomía & histología , Embrión no Mamífero , Femenino , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Masculino , Filogenia , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Regeneración/genética , Regeneración/fisiología , Diferenciación Sexual/fisiología , Transducción de Señal/fisiología , Cola (estructura animal)/embriología , Cola (estructura animal)/crecimiento & desarrollo , Factores de Transcripción/genética , Vertebrados/embriología , Vertebrados/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA