Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
bioRxiv ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38260300

RESUMEN

Alzheimer's disease (AD) is a prevalent and costly age-related dementia. Heritable factors account for 58-79% of variation in late-onset AD, but substantial variation remains in age-of- onset, disease severity, and whether those with high-risk genotypes acquire AD. To emulate the diversity of human populations, we utilized the AD-BXD mouse panel. This genetically diverse resource combines AD genotypes with multiple BXD strains to discover new genetic drivers of AD resilience. Comparing AD-BXD carriers to noncarrier littermates, we computed a novel quantitative metric for resilience to cognitive decline in the AD-BXDs. Our quantitative AD resilience trait was heritable and genetic mapping identified a locus on chr8 associated with resilience to AD mutations that resulted in amyloid brain pathology. Using a hippocampus proteomics dataset, we nominated the mitochondrial glutathione S reductase protein (GR or GSHR) as a resilience factor, finding that the DBA/2J genotype was associated with substantially higher GR abundance. By mapping protein QTLs (pQTLs), we identified synaptic organization and mitochondrial proteins coregulated in trans with a cis-pQTL for GR. We found four coexpression modules correlated with the quantitative resilience score in aged 5XFAD mice using paracliques, which were related to cell structure, protein folding, and postsynaptic densities. Finally, we found significant positive associations between human GSR transcript abundance in the brain and better outcomes on AD-related cognitive and pathology traits in the Religious Orders Study/Memory and Aging project (ROSMAP). Taken together, these data support a framework for resilience in which neuronal antioxidant pathway activity provides for stability of synapses within the hippocampus.

2.
Cells ; 10(2)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572179

RESUMEN

Substantial evidence indicates that mitochondrial impairment contributes to neuronal dysfunction and vulnerability in disease states, leading investigators to propose that the enhancement of mitochondrial function should be considered a strategy for neuroprotection. However, multiple attempts to improve mitochondrial function have failed to impact disease progression, suggesting that the biology underlying the normal regulation of mitochondrial pathways in neurons, and its dysfunction in disease, is more complex than initially thought. Here, we present the proteins and associated pathways involved in the transcriptional regulation of nuclear-encoded genes for mitochondrial function, with a focus on the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α). We highlight PGC-1α's roles in neuronal and non-neuronal cell types and discuss evidence for the dysregulation of PGC-1α-dependent pathways in Huntington's Disease, Parkinson's Disease, and developmental disorders, emphasizing the relationship between disease-specific cellular vulnerability and cell-type-specific patterns of PGC-1α expression. Finally, we discuss the challenges inherent to therapeutic targeting of PGC-1α-related transcriptional programs, considering the roles for neuron-enriched transcriptional coactivators in co-regulating mitochondrial and synaptic genes. This information will provide novel insights into the unique aspects of transcriptional regulation of mitochondrial function in neurons and the opportunities for therapeutic targeting of transcriptional pathways for neuroprotection.


Asunto(s)
Discapacidades del Desarrollo/genética , Regulación de la Expresión Génica , Enfermedades del Sistema Nervioso/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Transcripción Genética , Genes Mitocondriales , Humanos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
3.
Antioxidants (Basel) ; 11(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35052512

RESUMEN

Oxidative stress has been implicated in the etiology and pathobiology of various neurodegenerative diseases. At baseline, the cells of the nervous system have the capability to regulate the genes for antioxidant defenses by engaging nuclear factor erythroid 2 (NFE2/NRF)-dependent transcriptional mechanisms, and a number of strategies have been proposed to activate these pathways to promote neuroprotection. Here, we briefly review the biology of the transcription factors of the NFE2/NRF family in the brain and provide evidence for the differential cellular localization of NFE2/NRF family members in the cells of the nervous system. We then discuss these findings in the context of the oxidative stress observed in two neurodegenerative diseases, Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), and present current strategies for activating NFE2/NRF-dependent transcription. Based on the expression of the NFE2/NRF family members in restricted populations of neurons and glia, we propose that, when designing strategies to engage these pathways for neuroprotection, the relative contributions of neuronal and non-neuronal cell types to the overall oxidative state of tissue should be considered, as well as the cell types which have the greatest intrinsic capacity for producing antioxidant enzymes.

4.
Dev Neurosci ; 41(1-2): 1-16, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30580332

RESUMEN

Both high-fat diets (HFD) and bisphenol A (BPA), an environmental endocrine disruptor, are prevalent in industrialized societies. Previous studies have detected separate effects of BPA and HFD; however, none have assessed possible interactive effects. Here, pregnant dams consumed 0, 40, or 400 µg BPA/kg/day and were fed either a control (CON; 15.8% kcal fat) or HFD (45% kcal fat) from gestational day 2 through parturition. The pups were individually dosed with BPA from postnatal days (P) 1-10, while the dams continued to consume one of the two diets. Maternal behavior increased with the HFD while the offspring's periadolescent social play decreased with BPA, but no interactive effects were observed. Neither HFD nor BPA exposure changed performance on a social recognition task, and only BPA had an effect on the elevated plus maze. BPA increased several cytokines in the medial prefrontal cortex (mPFC) of P10 males but not females. Expression of several genes related to hormone synthesis and receptors, inflammation, oxidative stress, and apoptosis in the mPFC on P10 and P90 were altered due to BPA and/or HFD exposure with rare interactive effects. BPA resulted in an increase in the gene expression of Esr1 in the mPFC of females on both P10 and P90. Epigenetic analysis on P90 did not show a change in methylation or in the levels of pre-mRNA or microRNA. Thus, perinatal BPA and HFD have separate effects but rarely interact.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Dieta Alta en Grasa/efectos adversos , Estrógenos no Esteroides/toxicidad , Expresión Génica , Fenoles/toxicidad , Efectos Tardíos de la Exposición Prenatal/etiología , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Femenino , Expresión Génica/efectos de los fármacos , Expresión Génica/fisiología , Masculino , Conducta Materna/efectos de los fármacos , Conducta Materna/fisiología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Embarazo , Ratas , Ratas Long-Evans
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA