Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
J Environ Manage ; 364: 121427, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38870790

RESUMEN

Tidal wetlands play a critical role in emitting greenhouse gases (GHGs) into the atmosphere; our understanding of the intricate interplay between natural processes and human activities shaping their biogeochemistry and GHG emissions remains lacking. In this study, we delve into the spatiotemporal dynamics and key drivers of the GHG emissions from five tidal wetlands in the Scheldt Estuary by focusing on the interactive impacts of salinity and water pollution, two factors exhibiting contrasting gradients in this estuarine system: pollution escalates as salinity declines. Our findings reveal a marked escalation in GHG emissions when moving upstream, primarily attributed to increased concentrations of organic matter and nutrients, coupled with reduced levels of dissolved oxygen and pH. These low water quality conditions not only promote methanogenesis and denitrification to produce CH4 and N2O, respectively, but also shift the carbonate equilibria towards releasing more CO2. As a result, the most upstream freshwater wetland was the largest GHG emitter with a global warming potential around 35 to 70 times higher than the other wetlands. When moving seaward along a gradient of decreasing urbanization and increasing salinity, wetlands become less polluted and are characterized by lower concentrations of NO3-, TN and TOC, which induces stronger negative impact of elevated salinity on the GHG emissions from the saline wetlands. Consequently, these meso-to polyhaline wetlands released considerably smaller amounts of GHGs. These findings emphasize the importance of integrating management strategies, such as wetland restoration and pollution prevention, that address both natural salinity gradients and human-induced water pollution to effectively mitigate GHG emissions from tidal wetlands.

2.
BMC Biol ; 22(1): 123, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38807209

RESUMEN

BACKGROUND: Various animal taxa have specialized to living with social hosts. Depending on their level of specialization, these symbiotic animals are characterized by distinct behavioural, chemical, and morphological traits that enable close heterospecific interactions. Despite its functional importance, our understanding of the feeding ecology of animals living with social hosts remains limited. We examined how host specialization of silverfish co-habiting with ants affects several components of their feeding ecology. We combined stable isotope profiling, feeding assays, phylogenetic reconstruction, and microbial community characterization of the Neoasterolepisma silverfish genus and a wider nicoletiid and lepismatid silverfish panel where divergent myrmecophilous lifestyles are observed. RESULTS: Stable isotope profiling (δ13C and δ15N) showed that the isotopic niches of granivorous Messor ants and Messor-specialized Neoasterolepisma exhibit a remarkable overlap within an ant nest. Trophic experiments and gut dissections further supported that these specialized Neoasterolepisma silverfish transitioned to a diet that includes plant seeds. In contrast, the isotopic niches of generalist Neoasterolepisma silverfish and generalist nicoletiid silverfish were clearly different from their ant hosts within the shared nest environment. The impact of the myrmecophilous lifestyle on feeding ecology was also evident in the internal silverfish microbiome. Compared to generalists, Messor-specialists exhibited a higher bacterial density and a higher proportion of heterofermentative lactic acid bacteria. Moreover, the nest environment explained the infection profile (or the 16S rRNA genotypes) of Weissella bacteria in Messor-specialized silverfish and the ant hosts. CONCLUSIONS: Together, we show that social hosts are important determinants for the feeding ecology of symbiotic animals and can induce diet convergence.


Asunto(s)
Hormigas , Conducta Alimentaria , Simbiosis , Animales , Hormigas/fisiología , Hormigas/microbiología , Conducta Alimentaria/fisiología , Filogenia , Isótopos de Nitrógeno/análisis , Isótopos de Carbono/análisis , Perciformes/fisiología , Perciformes/microbiología
3.
Sci Total Environ ; 927: 172250, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599404

RESUMEN

Understanding the geochemistry and contamination of rivers affected by anthropogenic activities is paramount to water resources management. The Asopos river basin in central Greece is facing environmental quality deterioration threats due to industrial, urban and agricultural activities. Here, the geochemistry of river sediments and adjacent soil in terms of major and trace elements (Al, Ca, Mg, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) and the geochemical composition of surface water in terms of major ions, trace elements and nutrients along the Asopos river basin were determined. In addition, this study characterized potential nitrate sources through the analysis of stable isotope composition of NO3- (δ15Ν-ΝΟ3- and δ18Ο-ΝΟ3-). Results indicated that specific chemical constituents including nutrients (NO2-, NH4+, PO43-) and major ions (Na+, Cl-) were highest in the urban, industrialized and downstream areas. On the other hand, nitrate (NO3-) concentration in river water (median 7.9 mg/L) showed a decreasing trend from the upstream agricultural sites to the urban area and even more in the downstream of the urban area sites. Ionic ratios (NO3-/Cl-) and δ15Ν-ΝΟ3- values (range from +10.2 ‰ to +15.7 ‰), complemented with a Bayesian isotope mixing model, clearly showed the influence of organic wastes from septic systems and industries operating in the urban area on river nitrate geochemistry. The interpretation of geochemical data of soil and river sediment samples demonstrated the strong influence of local geology on Cr, Fe, Mn and Ni content, with isolated samples showing elevated concentrations of Cd, Cu, Pb and Zn, mostly within the industrialized urban environment. The calculation of enrichment factors based on the national background concentrations provided limited insights into the origin of geogenic metals. Overall, this study highlighted the need for a more holistic approach to assess the impact of the geological background and anthropogenic activities on river waters and sediments.

4.
Plant Environ Interact ; 5(2): e10136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38476212

RESUMEN

Tropical forest phenology directly affects regional carbon cycles, but the relation between species-specific and whole-canopy phenology remains largely uncharacterized. We present a unique analysis of historical tropical tree phenology collected in the central Congo Basin, before large-scale impacts of human-induced climate change. Ground-based long-term (1937-1956) phenological observations of 140 tropical tree species are recovered, species-specific phenological patterns analyzed and related to historical meteorological records, and scaled to characterize stand-level canopy dynamics. High phenological variability within and across species and in climate-phenology relationships is observed. The onset of leaf phenophases in deciduous species was triggered by drought and light availability for a subset of species and showed a species-specific decoupling in time along a bi-modal seasonality. The majority of the species remain evergreen, although central African forests experience relatively low rainfall. Annually a maximum of 1.5% of the canopy is in leaf senescence or leaf turnover, with overall phenological variability dominated by a few deciduous species, while substantial variability is attributed to asynchronous events of large and/or abundant trees. Our results underscore the importance of accounting for constituent signals in canopy-wide scaling and the interpretation of remotely sensed phenology signals.

5.
Nature ; 625(7996): 728-734, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200314

RESUMEN

Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.


Asunto(s)
Bosques , Árboles , Clima Tropical , Biodiversidad , Árboles/anatomía & histología , Árboles/clasificación , Árboles/crecimiento & desarrollo , África , Asia Sudoriental
6.
Nature ; 624(7990): 92-101, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957399

RESUMEN

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.


Asunto(s)
Secuestro de Carbono , Carbono , Conservación de los Recursos Naturales , Bosques , Biodiversidad , Carbono/análisis , Carbono/metabolismo , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Actividades Humanas , Restauración y Remediación Ambiental/tendencias , Desarrollo Sostenible/tendencias , Calentamiento Global/prevención & control
7.
Nat Plants ; 9(11): 1795-1809, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37872262

RESUMEN

Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.


Asunto(s)
Ecosistema , Árboles , Humanos , Árboles/metabolismo , Bosques , Hojas de la Planta/metabolismo , Hábitos , Carbono/metabolismo
8.
Environ Pollut ; 336: 122500, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37669700

RESUMEN

Estuaries have been recognized as one of the major sources of greenhouse gases (GHGs) in aquatic systems; yet we still lack insights into the impact of both anthropogenic and natural factors on the dynamics of GHG emissions. Here, we assessed the spatiotemporal dynamics and underlying drivers of the GHG emissions from the Scheldt Estuary with a focus on the effects of salinity gradient, water pollution, and land use types, together with their interaction. Overall, we found a negative impact of salinity on carbon dioxide (CO2) and nitrous oxide (N2O) emissions which can be due to the decrease of both salinity and water quality when moving upstream. Stronger impact of water pollution on the GHG emissions was found at the freshwater sites upstream compared to saline sites downstream. In particular, when water quality of the sites reduced from good, mainly located in the mouth and surrounded by arable sites, to polluted, mainly located in the upstream and surrounded by urban sites, CO2 emissions from the sites doubled while N2O emissions tripled. Similarly, the effects of water pollution on methane (CH4) emissions became much stronger in the freshwater sites compared to the saline sites. These decreasing effects from upstream to the mouth were associated with the increase in urbanization as sites surrounded by urban areas released on average almost two times more CO2 and N2O than sites surrounded by nature and industry areas. Applied machine learning methods also revealed that, in addition to salinity effects, nutrient and organic enrichment stimulated the GHG emissions from the Scheldt Estuary. These findings highlight the importance of the interaction between salinity, water pollution, and land use in order to understand their influences on GHG emissions from dynamic estuarine systems.

10.
J Environ Manage ; 346: 118996, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37725864

RESUMEN

Nitrogen (N) fertilization is crucial to sustain global food security, but fertilizer N production is energy-demanding and subsequent environmental N losses contribute to biodiversity loss and climate change. N losses can be mitigated be interfering with microbial nitrification, and therefore the use of nitrification inhibitors in enhanced efficiency fertilizers (EEFs) is an important N management strategy to increase N use efficiency and reduce N pollution. However, currently applied nitrification inhibitors have limitations and do not target all nitrifying microorganisms. Here, to identify broad-spectrum nitrification inhibitors, we adopted a drug discovery-based approach and screened 45,400 small molecules on different groups of nitrifying microorganisms. Although a high number of potential nitrification inhibitors were identified, none of them targeted all nitrifier groups. Moreover, a high number of new nitrification inhibitors were shown to be highly effective in culture but did not reduce ammonia consumption in soil. One archaea-targeting inhibitor was not only effective in soil, but even reduced - when co-applied with a bacteria-targeting inhibitor - ammonium consumption and greenhouse gas emissions beyond what is achieved with currently applied nitrification inhibitors. This advocates for combining different types of nitrification inhibitors in EEFs to optimize N management practices and make agriculture more sustainable.

11.
Nature ; 621(7980): 773-781, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37612513

RESUMEN

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.


Asunto(s)
Biodiversidad , Ambiente , Especies Introducidas , Árboles , Bases de Datos Factuales , Actividades Humanas , Especies Introducidas/estadística & datos numéricos , Especies Introducidas/tendencias , Filogenia , Lluvia , Temperatura , Árboles/clasificación , Árboles/fisiología
12.
Sci Total Environ ; 901: 166455, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37607634

RESUMEN

The Pinios River Basin (PRB) is the most intensively cultivated area in Greece, which hosts numerous industries and other anthropogenic activities. The analysis of water samples collected monthly for ∼1 ½ years in eight monitoring sites in the PRB revealed nitrate pollution of organic origin extending from upstream to downstream and occurring throughout the year, masking the signal from the application of synthetic fertilizers. Nitrate concentrations reached up to 3.6 mg/l as NO3--N, without exceeding the drinking water threshold of ∼11.0 mg/l (as NO3--N). However, the water quality status was "poor" or "bad" in ∼50 % of the samples based on a local index, which considers the potential impact of nitrate on aquatic biological communities. The δ15Ν-ΝΟ3- and δ18O-NO3- values ranged from +4.4 ‰ to +20.3 ‰ and from -0.5 ‰ to +14.4 ‰, respectively. The application of a Bayesian model showed that the proportional contribution of organic pollution from industries, animal breeding facilities and manure fertilizers exceeded 70 % in most river sites with an overall uncertainty of ∼0.3 (UI90 index). The δ18O-NO3- and its relationship with δ18O-H2O revealed N-cycling and mixing processes, which were difficult to identify apart from the uptake of nutrients by phytoplankton during the growing season and metabolic activities. The strong correlation of δ15Ν-ΝΟ3- values with a Land Use Index (LUI) and a Point Source Index (PSI) highlighted not only the role of non-point nitrate sources but also of point sources of nitrate pollution on water quality degradation, which are usually overlooked. The nitrification of organic wastes is the dominant nitrate source in most rivers in Europe. The systematic monitoring of rivers for nitrate isotopes will help improve the understanding of N-cycling and the impact of these pollutants on ecosystems and better inform policies for protection measures so to achieve good ecological status.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Nitrógeno/análisis , Isótopos de Nitrógeno/análisis , Nitratos/análisis , Fertilizantes/análisis , Teorema de Bayes , Ecosistema , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Contaminación del Agua/análisis , China
13.
Tree Physiol ; 43(10): 1731-1744, 2023 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-37471648

RESUMEN

The carbon isotope composition of respired CO2 (δ13CR) and bulk organic matter (δ13CB) of various plant compartments informs about the isotopic fractionation and substrate of respiratory processes, which are crucial to advance the understanding of carbon allocation in plants. Nevertheless, the variation across organs, species and seasons remains poorly understood. Cavity Ring-Down Laser Spectroscopy was applied to measure δ13CR in leafy shoots and woody stems of maple (Acer platanoides L.), oak (Quercus robur L.) and cedar (Thuja occidentalis L.) trees during spring and late summer. Photosynthesis, respiration, growth and non-structural carbohydrates were measured in parallel to evaluate potential drivers for respiratory fractionation. The CO2 respired by maple and oak shoots was 13C-enriched relative to δ13CB during spring, but not late summer or in the stem. In cedar, δ13CR did not vary significantly throughout organs and seasons, with respired CO2 being 13C-depleted relative to δ13CB. Shoot δ13CR was positively related to leaf starch concentration in maple, while stem δ13CR was inversely related to stem growth. These relations were not significant for oak or cedar. The variability in δ13CR suggests (i) different contributions of respiratory pathways between organs and (ii) seasonality in the respiratory substrate and constitutive compounds for wood formation in deciduous species, less apparent in evergreen cedar, whose respiratory metabolism might be less variable.


Asunto(s)
Dióxido de Carbono , Árboles , Estaciones del Año , Árboles/fisiología , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análisis , Carbono/metabolismo , Hojas de la Planta/metabolismo
14.
Microb Biotechnol ; 16(1): 15-27, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36378579

RESUMEN

Nitrogen is the most crucial element in the production of nutritious feeds and foods. The production of reactive nitrogen by means of fossil fuel has thus far been able to guarantee the protein supply for the world population. Yet, the production and massive use of fertilizer nitrogen constitute a major threat in terms of environmental health and sustainability. It is crucial to promote consumer acceptance and awareness towards proteins produced by highly effective microorganisms, and their potential to replace proteins obtained with poor nitrogen efficiencies from plants and animals. The fact that reactive fertilizer nitrogen, produced by the Haber Bosch process, consumes a significant amount of fossil fuel worldwide is of concern. Moreover, recently, the prices of fossil fuels have increased the cost of reactive nitrogen by a factor of 3 to 5 times, while international policies are fostering the transition towards a more sustainable agro-ecology by reducing mineral fertilizers inputs and increasing organic farming. The combination of these pressures and challenges opens opportunities to use the reactive nitrogen nutrient more carefully. Time has come to effectively recover used nitrogen from secondary resources and to upgrade it to a legal status of fertilizer. Organic nitrogen is a slow-release fertilizer, it has a factor of 2.5 or higher economic value per unit nitrogen as fertilizer and thus adequate technologies to produce it, for instance by implementing photobiological processes, are promising. Finally, it appears wise to start the integration in our overall feed and food supply chains of the exceptional potential of biological nitrogen fixation. Nitrogen produced by the nitrogenase enzyme, either in the soil or in novel biotechnology reactor systems, deserves to have a 'renaissance' in the context of planetary governance in general and the increasing number of people who desire to be fed in a sustainable way in particular.


Asunto(s)
Fertilizantes , Nitrógeno , Animales , Nitrógeno/análisis , Fertilizantes/análisis , Planetas , Suelo , Combustibles Fósiles , Agricultura
15.
Sci Total Environ ; 858(Pt 1): 159763, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309271

RESUMEN

The Atalanti basin is an intensively cultivated area in central Greece, facing groundwater quality deterioration threats due to natural and anthropogenic-related contamination sources. A combination of statistical and hydrogeochemical techniques, and stable isotope compositions (δ2H-H2O and δ18Ο-Η2Ο, δ15Ν-ΝΟ3- and δ18Ο-ΝΟ3-, δ34S-SO42- and δ18O-SO42-) were applied to elucidate the origin of salinity and nitrate contamination, and shed light on the potential associations between geogenic Cr(VI) and NO3- sources and transformations. Nitrate and Cr(VI) concentrations reached up to 337 mg L-1 and 76.1 µg L-1, respectively, exceeding WHO threshold values in places. The cluster of samples with the high salinity was mostly influenced by irrigation return flow and marine aerosols, and less by seawater intrusion, as evidenced by the ionic ratios (e.g., Na+/Cl-) and the stable isotopes of oxygen and hydrogen in water, and sulphur and oxygen in sulphates. The δ15Ν-ΝΟ3- and δ18O-NO3- values ranged from +2.0 ‰ to +14.5 ‰ and + 0.3 ‰ to +11.0 ‰, respectively. We found that the dominant sources of NO3- in groundwater were fertilizers in the central part of the area and sewage waste in the northern part around the residential area of Livanates. The occurrence of denitrification was evident in the northern part of the basin, where the DO levels were lowest (≤ 2.2 mg L-1), whereas nitrification of NH4+-fertilizers prevailed in the central part. Elevated Cr(VI) values (≥ 20 µg/l) were associated with the lowest deviation of the measured from the theoretical nitrification δ18Ο-NO3- values, whereas the lowest Cr(VI) values were observed in the denitrified water samples. Our isotope findings revealed the strong influence of redox conditions on the biogeochemical transformations of N species and the mobilization of Cr(VI) that will help improve the understanding of the fate of these contaminants from the unsaturated zone to the groundwater in areas of agricultural and urban land use.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Nitratos/análisis , Fertilizantes , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Isótopos de Nitrógeno/análisis , Agua Subterránea/química , Oxígeno , Agua
16.
New Phytol ; 236(5): 1676-1690, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36089827

RESUMEN

The lack of field-based data in the tropics limits our mechanistic understanding of the drivers of net primary productivity (NPP) and allocation. Specifically, the role of local edaphic factors - such as soil parent material and topography controlling soil fertility as well as water and nutrient fluxes - remains unclear and introduces substantial uncertainty in understanding net ecosystem productivity and carbon (C) stocks. Using a combination of vegetation growth monitoring and soil geochemical properties, we found that soil fertility parameters reflecting the local parent material are the main drivers of NPP and C allocation patterns in tropical montane forests, resulting in significant differences in below- to aboveground biomass components across geochemical (soil) regions. Topography did not constrain the variability in C allocation and NPP. Soil organic C stocks showed no relation to C input in tropical forests. Instead, plant C input seemingly exceeded the maximum potential of these soils to stabilize C. We conclude that, even after many millennia of weathering and the presence of deeply developed soils, above- and belowground C allocation in tropical forests, as well as soil C stocks, vary substantially due to the geochemical properties that soils inherit from parent material.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Carbono , Clima Tropical , Bosques , Biomasa
17.
Nat Ecol Evol ; 6(8): 1122-1131, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35788708

RESUMEN

Secondary forests constitute an increasingly important component of tropical forests worldwide. Although cycling of essential nutrients affects recovery trajectories of secondary forests, the effect of nutrient limitation on forest regrowth is poorly constrained. Here we use three lines of evidence from secondary forest succession sequences in central Africa to identify potential nutrient limitation in regrowing forests. First, we show that atmospheric phosphorus supply exceeds demand along forest succession, whereas forests rely on soil stocks to meet their base cation demands. Second, soil nutrient metrics indicate that available phosphorus increases along the succession, whereas available cations decrease. Finally, fine root, foliar and litter stoichiometry show that tissue calcium concentrations decline relative to those of nitrogen and phosphorus during succession. Taken together, these observations suggest that calcium becomes an increasingly scarce resource in central African forests during secondary succession. Furthermore, ecosystem calcium storage shifts from soil to woody biomass over succession, making it a vulnerable nutrient in the wake of land-use change scenarios that involve woody biomass export. Our results thus call for a broadened focus on elements other than nitrogen and phosphorus regarding tropical forest biogeochemical cycles and identify calcium as a scarce and potentially limiting nutrient in an increasingly disturbed and dynamic tropical forest landscape.


Asunto(s)
Calcio , Ecosistema , Bosques , Nitrógeno , Fósforo , Suelo , Árboles
18.
Rapid Commun Mass Spectrom ; 36(22): e9370, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-35906712

RESUMEN

RATIONALE: Stable isotope approaches are increasingly applied to better understand the cycling of inorganic nitrogen (Ni ) forms, key limiting nutrients in terrestrial and aquatic ecosystems. A systematic comparison of the accuracy and precision of the most commonly used methods to analyze δ15 N in NO3 - and NH4 + and interlaboratory comparison tests to evaluate the comparability of isotope results between laboratories are, however, still lacking. METHODS: Here, we conducted an interlaboratory comparison involving 10 European laboratories to compare different methods and laboratory performance to measure δ15 N in NO3 - and NH4 + . The approaches tested were (a) microdiffusion (MD), (b) chemical conversion (CM), which transforms Ni to either N2 O (CM-N2 O) or N2 (CM-N2 ), and (c) the denitrifier (DN) methods. RESULTS: The study showed that standards in their single forms were reasonably replicated by the different methods and laboratories, with laboratories applying CM-N2 O performing superior for both NO3 - and NH4 + , followed by DN. Laboratories using MD significantly underestimated the "true" values due to incomplete recovery and also those using CM-N2 showed issues with isotope fractionation. Most methods and laboratories underestimated the at%15 N of Ni of labeled standards in their single forms, but relative errors were within maximal 6% deviation from the real value and therefore acceptable. The results showed further that MD is strongly biased by nonspecificity. The results of the environmental samples were generally highly variable, with standard deviations (SD) of up to ± 8.4‰ for NO3 - and ± 32.9‰ for NH4 + ; SDs within laboratories were found to be considerably lower (on average 3.1‰). The variability could not be connected to any single factor but next to errors due to blank contamination, isotope normalization, and fractionation, and also matrix effects and analytical errors have to be considered. CONCLUSIONS: The inconsistency among all methods and laboratories raises concern about reported δ15 N values particularly from environmental samples.


Asunto(s)
Ecosistema , Nitrógeno , Laboratorios , Isótopos de Nitrógeno/análisis
19.
Heliyon ; 8(4): e09201, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35399386

RESUMEN

The individual and interaction effects of elevation, production system (PS), shade and postharvest processing (PHP) on the ratio of dry beans to red cherries and the green bean physical quality features and defects of arabica coffee in southwestern Ethiopia were evaluated. The results showed that, with increasing elevation, the proportions of the total defected beans and large beans decreased while that of medium beans increased. Moreover, the proportion of secondary defects, 1000 seed weight and bean volume were higher for lowland and midland coffees than for highland coffee, but bean density was higher for highland than for lowland and midland coffees. The proportion of the total defected beans was also higher for modern plantation coffee in lowland than for modern plantation and semi-plantation coffees in midland and highland, but the 1000 seed weight was lower for semi-plantation coffee in highland than for modern plantation coffee in lowland and midland. The ratio of primary and secondary defects respectively was higher for dry- and wet-processed coffee in lowland than for dry- and wet-processed coffees in midland and highland. But, the ratio of small beans was lower for wet-processed coffee in lowland than for dry-processed coffee across elevations. The ratio of dry beans to red cherries and the 100 beans volume were higher for wet-processed modern plantation and semi-plantation coffees in midland than for dry-processed coffees of both production systems across elevations. However, the ratio of large beans was higher (1) for wet-processed modern plantation coffee in lowland than for dry- and wet-processed coffees of both production systems across elevations, and (2) for coffee that was grown without shade and wet-processed in lowland than for other coffees. Bean density was higher for dry-processed modern plantation and semi-plantation coffee in midland and highland, respectively than for other coffees across elevations. Overall, these results underlined the primary effects of elevation and PS, and the complex interaction effects between PHP and PS or shade on the ratio of dry beans to red cherries and the physical features and defects of green arabica coffee beans.

20.
Environ Sci Pollut Res Int ; 29(38): 57703-57719, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35355184

RESUMEN

A coupled methodology of nitrogen isotopes, hydrogeochemical characterization, multivariate statistical analysis, and SIAR Bayesian modeling has been employed to identify the sources of NO3- and N transformation processes in three alluvial aquifers (Schinos, Thiva, and Central Evia) located in central Greece where geogenic Cr(VI) co-occurs with agricultural activity and rural development. Hexavalent chromium concentrations exceed 50 µg/L in many sampling stations of the studied groundwater bodies, while nitrate contamination is evident in all three study areas with concentrations well over 50 mg/L. The mean δ15N-NO3- and δ18Ο-NO3- values are 6.67 ± 1.77‰ and 2.68 ± 1.77‰ in C. Evia, 8.72 ± 4.74‰ and 3.96 ± 4.57‰ in Schinos and 4.44 ± 1.71‰ and 2.91 ± 1.02‰ in Thiva, respectively. Domestic sewage and N-bearing fertilizers are contributing in various degrees to the observed nitrification which is the dominant transformation process of N in the studied aquifers. Multivariate statistics indicated that the main processes identified in the study areas are salinization, silicate dissolution, and groundwater contamination due to fertilizer use. It is suggested that ultramafic rock-related alluvial aquifers must be closely monitored in terms of nutrient inputs as an effective measure for controlling Cr(VI) release in groundwater.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Teorema de Bayes , China , Cromo , Monitoreo del Ambiente/métodos , Fertilizantes/análisis , Agua Subterránea/química , Nitratos/análisis , Isótopos de Nitrógeno/análisis , Óxidos de Nitrógeno/análisis , Isótopos de Oxígeno , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA