Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(5): e1012124, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38758962

RESUMEN

Projects such as the European Covid-19 Forecast Hub publish forecasts on the national level for new deaths, new cases, and hospital admissions, but not direct measurements of hospital strain like critical care bed occupancy at the sub-national level, which is of particular interest to health professionals for planning purposes. We present a sub-national French framework for forecasting hospital strain based on a non-Markovian compartmental model, its associated online visualisation tool and a retrospective evaluation of the real-time forecasts it provided from January to December 2021 by comparing to three baselines derived from standard statistical forecasting methods (a naive model, auto-regression, and an ensemble of exponential smoothing and ARIMA). In terms of median absolute error for forecasting critical care unit occupancy at the two-week horizon, our model only outperformed the naive baseline for 4 out of 14 geographical units and underperformed compared to the ensemble baseline for 5 of them at the 90% confidence level (n = 38). However, for the same level at the 4 week horizon, our model was never statistically outperformed for any unit despite outperforming the baselines 10 times spanning 7 out of 14 geographical units. This implies modest forecasting utility for longer horizons which may justify the application of non-Markovian compartmental models in the context of hospital-strain surveillance for future pandemics.


Asunto(s)
COVID-19 , Predicción , SARS-CoV-2 , COVID-19/epidemiología , Humanos , Francia/epidemiología , Predicción/métodos , Biología Computacional/métodos , Estudios Retrospectivos , Modelos Estadísticos , Pandemias/estadística & datos numéricos , Hospitales/estadística & datos numéricos , Hospitalización/estadística & datos numéricos , Ocupación de Camas/estadística & datos numéricos
2.
Elife ; 102021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34652271

RESUMEN

Simulating nationwide realistic individual movements with a detailed geographical structure can help optimise public health policies. However, existing tools have limited resolution or can only account for a limited number of agents. We introduce Epidemap, a new framework that can capture the daily movement of more than 60 million people in a country at a building-level resolution in a realistic and computationally efficient way. By applying it to the case of an infectious disease spreading in France, we uncover hitherto neglected effects, such as the emergence of two distinct peaks in the daily number of cases or the importance of local density in the timing of arrival of the epidemic. Finally, we show that the importance of super-spreading events strongly varies over time.


Asunto(s)
COVID-19/epidemiología , Enfermedades Transmisibles/epidemiología , Epidemias/estadística & datos numéricos , Geografía/métodos , Salud Pública/métodos , Francia/epidemiología , Humanos , Salud Pública/instrumentación , Análisis Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA