RESUMEN
In Alzheimer's disease (AD), the microtubule-binding protein tau becomes abnormally hyperphosphorylated and aggregated in selective brain regions such as the cortex and hippocampus 1-3 . However, other brain regions like the cerebellum and brain stem remain largely intact despite the universal expression of tau throughout the brain. Here, we found that an understudied splice isoform of tau termed "big tau" is significantly more abundant in the brain regions less vulnerable to tau pathology compared to tau pathology-vulnerable regions. We used various cellular and animal models to demonstrate that big tau possesses multiple properties that can resist AD-related pathological changes. Importantly, human AD patients show a higher expression level of pathology-resisting big tau in the cerebellum, the brain region spared from tau pathology. Our study examines the unique properties of big tau, expanding our current understanding of tau pathophysiology. Altogether, our data suggest that alternative splicing to favor big tau is a viable strategy to modulate tau pathology.
RESUMEN
Rhamnose is an essential component of the plant cell wall and is synthesized from uridine diphosphate (UDP)-glucose by the RHAMNOSE1 (RHM1) enzyme. RHM1 localizes to biomolecular condensates in plants, but their identity, formation, and function remain elusive. Combining live imaging, genetics, and biochemical approaches in Arabidopsis and heterologous systems, we show that RHM1 alone is sufficient to form enzymatically active condensates, which we name rhamnosomes. Rhamnosome formation is required for UDP-rhamnose synthesis and organ development. Overall, our study demonstrates a novel role for biomolecular condensation in metabolism and organismal development, and provides further support for how organisms have harnessed this biophysical process to regulate small molecule metabolism.
RESUMEN
The ability to map trafficking for thousands of endogenous proteins at once in living cells would reveal biology currently invisible to both microscopy and mass spectrometry. Here, we report TransitID, a method for unbiased mapping of endogenous proteome trafficking with nanometer spatial resolution in living cells. Two proximity labeling (PL) enzymes, TurboID and APEX, are targeted to source and destination compartments, and PL with each enzyme is performed in tandem via sequential addition of their small-molecule substrates. Mass spectrometry identifies the proteins tagged by both enzymes. Using TransitID, we mapped proteome trafficking between cytosol and mitochondria, cytosol and nucleus, and nucleolus and stress granules (SGs), uncovering a role for SGs in protecting the transcription factor JUN from oxidative stress. TransitID also identifies proteins that signal intercellularly between macrophages and cancer cells. TransitID offers a powerful approach for distinguishing protein populations based on compartment or cell type of origin.
Asunto(s)
Mitocondrias , Proteoma , Proteoma/metabolismo , Mitocondrias/metabolismo , Nucléolo Celular/metabolismo , Espectrometría de Masas/métodos , Regulación de la Expresión GénicaRESUMEN
Biomolecular condensation underlies the biogenesis of an expanding array of membraneless assemblies, including stress granules (SGs), which form under a variety of cellular stresses. Advances have been made in understanding the molecular grammar of a few scaffold proteins that make up these phases, but how the partitioning of hundreds of SG proteins is regulated remains largely unresolved. While investigating the rules that govern the condensation of ataxin-2, an SG protein implicated in neurodegenerative disease, we unexpectedly identified a short 14 aa sequence that acts as a condensation switch and is conserved across the eukaryote lineage. We identify poly(A)-binding proteins as unconventional RNA-dependent chaperones that control this regulatory switch. Our results uncover a hierarchy of cis and trans interactions that fine-tune ataxin-2 condensation and reveal an unexpected molecular function for ancient poly(A)-binding proteins as regulators of biomolecular condensate proteins. These findings may inspire approaches to therapeutically target aberrant phases in disease.
Asunto(s)
Ataxina-2 , Enfermedades Neurodegenerativas , Humanos , Ataxina-2/genética , Proteína I de Unión a Poli(A) , Enfermedades Neurodegenerativas/metabolismo , Condensados BiomolecularesRESUMEN
The molecular machinery that enables life has evolved in water, yet many of the organisms around us are able to survive even extreme desiccation. Especially remarkable are single-cell and sedentary organisms that rely on specialized biomolecular machinery to survive in environments that are routinely subjected to a near-complete lack of water. In this review, we zoom in on the molecular level of what is happening in the cellular environment under water stress. We cover the various mechanisms by which biochemical components of the cell can dysfunction in dehydrated cells and detail the different strategies that organisms have evolved to eliminate or cope with these desiccation-induced perturbations. We specifically focus on two survival strategies: (1) the use of disordered proteins to protect the cellular environment before, during, and in the recovery from desiccation, and (2) the use of biomolecular condensates as a self-assembly mechanism that can sequester or protect specific cellular machinery in times of water stress. We provide a summary of experimental work describing the critical contributions of disordered proteins and biomolecular condensates to the cellular response to water loss and highlight their role in desiccation tolerance. Desiccation biology is an exciting area of cell biology, still far from being completely explored. Understanding it on the molecular level is bound to give us critical new insights in how life adapted/can adapt to the loss of water, spanning from the early colonization of land to how we can deal with climate change in our future.
Asunto(s)
Deshidratación , Desecación , Humanos , Adaptación Fisiológica/fisiología , BiofisicaRESUMEN
Positively charged repeat peptides are emerging as key players in neurodegenerative diseases. These peptides can perturb diverse cellular pathways but a unifying framework for how such promiscuous toxicity arises has remained elusive. We used mass-spectrometry-based proteomics to define the protein targets of these neurotoxic peptides and found that they all share similar sequence features that drive their aberrant condensation with these positively charged peptides. We trained a machine learning algorithm to detect such sequence features and unexpectedly discovered that this mode of toxicity is not limited to human repeat expansion disorders but has evolved countless times across the tree of life in the form of cationic antimicrobial and venom peptides. We demonstrate that an excess in positive charge is necessary and sufficient for this killer activity, which we name 'polycation poisoning'. These findings reveal an ancient and conserved mechanism and inform ways to leverage its design rules for new generations of bioactive peptides.
RESUMEN
The ability to map trafficking for thousands of endogenous proteins at once in living cells would reveal biology currently invisible to both microscopy and mass spectrometry. Here we report TransitID, a method for unbiased mapping of endogenous proteome trafficking with nanometer spatial resolution in living cells. Two proximity labeling (PL) enzymes, TurboID and APEX, are targeted to source and destination compartments, and PL with each enzyme is performed in tandem via sequential addition of their small-molecule substrates. Mass spectrometry identifies the proteins tagged by both enzymes. Using TransitID, we mapped proteome trafficking between cytosol and mitochondria, cytosol and nucleus, and nucleolus and stress granules, uncovering a role for stress granules in protecting the transcription factor JUN from oxidative stress. TransitID also identifies proteins that signal intercellularly between macrophages and cancer cells. TransitID introduces a powerful approach for distinguishing protein populations based on compartment or cell type of origin.
RESUMEN
In the past almost 15 years, we witnessed the birth of a new scientific field focused on the existence, formation, biological functions, and disease associations of membraneless bodies in cells, now referred to as biomolecular condensates. Pioneering studies from several laboratories [reviewed in1-3] supported a model wherein biomolecular condensates associated with diverse biological processes form through the process of phase separation. These and other findings that followed have revolutionized our understanding of how biomolecules are organized in space and time within cells to perform myriad biological functions, including cell fate determination, signal transduction, endocytosis, regulation of gene expression and protein translation, and regulation of RNA metabolism. Further, condensates formed through aberrant phase transitions have been associated with numerous human diseases, prominently including neurodegeneration and cancer. While in some cases, rigorous evidence supports links between formation of biomolecular condensates through phase separation and biological functions, in many others such links are less robustly supported, which has led to rightful scrutiny of the generality of the roles of phase separation in biology and disease.4-7 During a week-long workshop in March 2022 at the Telluride Science Research Center (TSRC) in Telluride, Colorado, â¼25 scientists addressed key questions surrounding the biomolecular condensates field. Herein, we present insights gained through these discussions, addressing topics including, roles of condensates in diverse biological processes and systems, and normal and disease cell states, their applications to synthetic biology, and the potential for therapeutically targeting biomolecular condensates.
Asunto(s)
Condensados Biomoleculares , Enfermedad , Transición de Fase , HumanosRESUMEN
Mutations in the ataxin-2 gene (ATXN2) cause the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type 2 (SCA2). A therapeutic strategy using antisense oligonucleotides targeting ATXN2 has entered clinical trial in humans. Additional ways to decrease ataxin-2 levels could lead to cheaper or less invasive therapies and elucidate how ataxin-2 is normally regulated. Here, we perform a genome-wide fluorescence-activated cell sorting (FACS)-based CRISPR-Cas9 screen in human cells and identify genes encoding components of the lysosomal vacuolar ATPase (v-ATPase) as modifiers of endogenous ataxin-2 protein levels. Multiple FDA-approved small molecule v-ATPase inhibitors lower ataxin-2 protein levels in mouse and human neurons, and oral administration of at least one of these drugs-etidronate-is sufficient to decrease ataxin-2 in the brains of mice. Together, we propose v-ATPase as a drug target for ALS and SCA2 and demonstrate the value of FACS-based screens in identifying genetic-and potentially druggable-modifiers of human disease proteins.
Asunto(s)
Esclerosis Amiotrófica Lateral , Ataxias Espinocerebelosas , ATPasas de Translocación de Protón Vacuolares , Animales , Humanos , Ratones , Ataxina-2/genética , Ataxina-2/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Preparaciones Farmacéuticas , Ácido Etidrónico , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/genética , Oligonucleótidos Antisentido/genéticaRESUMEN
Intracellular phase separation is emerging as a universal principle for organizing biochemical reactions in time and space. It remains incompletely resolved how biological function is encoded in these assemblies and whether this depends on their material state. The conserved intrinsically disordered protein PopZ forms condensates at the poles of the bacterium Caulobacter crescentus, which in turn orchestrate cell-cycle regulating signaling cascades. Here we show that the material properties of these condensates are determined by a balance between attractive and repulsive forces mediated by a helical oligomerization domain and an expanded disordered region, respectively. A series of PopZ mutants disrupting this balance results in condensates that span the material properties spectrum, from liquid to solid. A narrow range of condensate material properties supports proper cell division, linking emergent properties to organismal fitness. We use these insights to repurpose PopZ as a modular platform for generating tunable synthetic condensates in human cells.
Asunto(s)
Caulobacter crescentus , Proteínas Intrínsecamente Desordenadas , Proteínas Bacterianas/metabolismo , Condensados Biomoleculares , Caulobacter crescentus/metabolismo , División Celular , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismoRESUMEN
Stress granules are non-membrane bound granules temporarily forming in the cytoplasm in response to stress. Proteins of the nucleocytoplasmic transport machinery were found in these stress granules and it was suggested that stress granules contribute to the nucleocytoplasmic transport defects in several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). The aim of this study was to investigate whether there is a causal link between stress granule formation and nucleocytoplasmic transport deficits. Therefore, we uncoupled stress granule formation from cellular stress while studying nuclear import. This was carried out by preventing cells from assembling stress granules despite being subjected to cellular stress either by knocking down both G3BP1 and G3BP2 or by pharmacologically inhibiting stress granule formation. Conversely, we induced stress granules by overexpressing G3BP1 in the absence of cellular stress. In both conditions, nuclear import was not affected demonstrating that stress granule formation is not a direct cause of stress-induced nucleocytoplasmic transport deficits.
RESUMEN
Dipeptide repeats (DPRs) associated with C9orf72 repeat expansions perturb nucleocytoplasmic transport and are implicated in the pathogenesis of amyotrophic lateral sclerosis. We present a synthetic hydrogel platform that can be used to analyze aspects of the molecular interaction of dipeptide repeats and the phenylalanine-glycine (FG) phase of the nuclear pore complex (NPC). Hydrogel scaffolds composed of acrylamide and copolymerized with FG monomers are first formed to recapitulate key FG interactions found in the NPC. With labeled probes, we find evidence that toxic arginine-rich DPRs (poly-GR and poly-PR), but not the non-toxic poly-GP, target NPC hydrogel mimics and block selective entry of a key nuclear transport receptor, importin beta (Impß). The ease with which these synthetic hydrogel mimics can be adjusted/altered makes them an invaluable tool to dissect complex molecular interactions that underlie cellular transport processes and their perturbation in disease.
Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Transporte Activo de Núcleo Celular , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/química , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipéptidos , Humanos , Hidrogeles , Poro Nuclear/metabolismo , Poro Nuclear/patologíaRESUMEN
A recent study by Huang et al. unexpectedly uncovered that DAXX moonlights as a booster of protein folding, including counteracting aggregation of tumor suppressor p53. Since p53 aggregation is a common hallmark of cancer, this finding provides a potential pathway to therapeutically reactivate p53 signaling and halt tumor progression.
Asunto(s)
Neoplasias , Proteínas Nucleares , Proteínas Co-Represoras/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Pliegue de Proteína , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
BACKGROUND: Array tomography (AT) is a high-resolution imaging method to resolve fine details at the organelle level and has the advantage that it can provide 3D volumes to show the tissue context. AT can be carried out in a correlative way, combing light and electron microscopy (LM, EM) techniques. However, the correlation between modalities can be a challenge and delineating specific regions of interest in consecutive sections can be time-consuming. Integrated light and electron microscopes (iLEMs) offer the possibility to provide well-correlated images and may pose an ideal solution for correlative AT. Here, we report a workflow to automate navigation between regions of interest. RESULTS: We use a targeted approach that allows imaging specific tissue features, like organelles, cell processes, and nuclei at different scales to enable fast, directly correlated in situ AT using an integrated light and electron microscope (iLEM-AT). Our workflow is based on the detection of section boundaries on an initial transmitted light acquisition that serves as a reference space to compensate for changes in shape between sections, and we apply a stepwise refinement of localizations as the magnification increases from LM to EM. With minimal user interaction, this enables autonomous and speedy acquisition of regions containing cells and cellular organelles of interest correlated across different magnifications for LM and EM modalities, providing a more efficient way to obtain 3D images. We provide a proof of concept of our approach and the developed software tools using both Golgi neuronal impregnation staining and fluorescently labeled protein condensates in cells. CONCLUSIONS: Our method facilitates tracing and reconstructing cellular structures over multiple sections, is targeted at high resolution ILEMs, and can be integrated into existing devices, both commercial and custom-built systems.
Asunto(s)
Imagenología Tridimensional , Tomografía , Coloración y Etiquetado , Tomografía Computarizada por Rayos X , Flujo de TrabajoRESUMEN
Many organisms evolved strategies to survive desiccation. Plant seeds protect dehydrated embryos from various stressors and can lay dormant for millennia. Hydration is the key trigger to initiate germination, but the mechanism by which seeds sense water remains unresolved. We identified an uncharacterized Arabidopsis thaliana prion-like protein we named FLOE1, which phase separates upon hydration and allows the embryo to sense water stress. We demonstrate that biophysical states of FLOE1 condensates modulate its biological function in vivo in suppressing seed germination under unfavorable environments. We find intragenic, intraspecific, and interspecific natural variation in FLOE1 expression and phase separation and show that intragenic variation is associated with adaptive germination strategies in natural populations. This combination of molecular, organismal, and ecological studies uncovers FLOE1 as a tunable environmental sensor with direct implications for the design of drought-resistant crops, in the face of climate change.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Germinación , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Priones/metabolismo , Semillas/crecimiento & desarrollo , Agua/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/ultraestructura , Deshidratación , Imagenología Tridimensional , Péptidos y Proteínas de Señalización Intercelular/química , Mutación/genética , Latencia en las Plantas , Plantas Modificadas Genéticamente , Dominios Proteicos , Isoformas de Proteínas/metabolismo , Semillas/ultraestructuraRESUMEN
A hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). How this mutation leads to these neurodegenerative diseases remains unclear. Here, we show using patient stem cell-derived motor neurons that the repeat expansion impairs microtubule-based transport, a process critical for neuronal survival. Cargo transport defects are recapitulated by treating neurons from healthy individuals with proline-arginine and glycine-arginine dipeptide repeats (DPRs) produced from the repeat expansion. Both arginine-rich DPRs similarly inhibit axonal trafficking in adult Drosophila neurons in vivo. Physical interaction studies demonstrate that arginine-rich DPRs associate with motor complexes and the unstructured tubulin tails of microtubules. Single-molecule imaging reveals that microtubule-bound arginine-rich DPRs directly impede translocation of purified dynein and kinesin-1 motor complexes. Collectively, our study implicates inhibitory interactions of arginine-rich DPRs with axonal transport machinery in C9orf72-associated ALS/FTD and thereby points to potential therapeutic strategies.
Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Animales , Arginina/genética , Transporte Axonal , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN , Dipéptidos/farmacología , Drosophila/genética , Demencia Frontotemporal/genética , Humanos , Microtúbulos/metabolismo , Neuronas Motoras/metabolismoRESUMEN
TDP-43 is the major component of pathological inclusions in most ALS patients and in up to 50% of patients with frontotemporal dementia (FTD). Heterozygous missense mutations in TARDBP, the gene encoding TDP-43, are one of the common causes of familial ALS. In this study, we investigate TDP-43 protein behavior in induced pluripotent stem cell (iPSC)-derived motor neurons from three ALS patients with different TARDBP mutations, three healthy controls and an isogenic control. TARDPB mutations induce several TDP-43 changes in spinal motor neurons, including cytoplasmic mislocalization and accumulation of insoluble TDP-43, C-terminal fragments, and phospho-TDP-43. By generating iPSC lines with allele-specific tagging of TDP-43, we find that mutant TDP-43 initiates the observed disease phenotypes and has an altered interactome as indicated by mass spectrometry. Our findings also indicate that TDP-43 proteinopathy results in a defect in mitochondrial transport. Lastly, we show that pharmacological inhibition of histone deacetylase 6 (HDAC6) restores the observed TDP-43 pathologies and the axonal mitochondrial motility, suggesting that HDAC6 inhibition may be an interesting therapeutic target for neurodegenerative disorders linked to TDP-43 pathology.
Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Transporte Axonal , Proteínas de Unión al ADN/genética , Histona Desacetilasa 6/metabolismo , Neuronas Motoras/metabolismo , Esclerosis Amiotrófica Lateral/genética , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Células Madre Pluripotentes Inducidas/citología , Mitocondrias/metabolismo , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Mutación MissenseRESUMEN
Protein phase separation has emerged as a novel paradigm to explain the biogenesis of membraneless organelles and other so-called biomolecular condensates. While the implication of this physical phenomenon within cell biology is providing us with novel ways for understanding how cells compartmentalize biochemical reactions and encode function in such liquid-like assemblies, the newfound appreciation of this process also provides immense opportunities for designing and sculpting biological matter. Here, we propose that understanding the cell's instruction manual of phase separation will enable bioengineers to begin creating novel functionalized biological materials and unprecedented tools for synthetic biology. We present FASE as the synthesis of the existing sticker-spacer framework, which explains the physical driving forces underlying phase separation, with quintessential principles of Scandinavian design. FASE serves both as a designer condensates catalogue and construction manual for the aspiring (membraneless) biomolecular architect. Our approach aims to inspire a new generation of bioengineers to rethink phase separation as an opportunity for creating reactive biomaterials with unconventional properties and to encode novel biological function in living systems. Although still in its infancy, several studies highlight how designer condensates have immediate and widespread potential applications in industry and medicine.
Asunto(s)
Química Computacional/métodos , Sustancias Macromoleculares/química , Proteínas/aislamiento & purificación , Modelos Moleculares , Transición de Fase , Biología SintéticaRESUMEN
Despite the ecological and agronomical importance of seed germination, how seeds integrate environmental signals to trigger germination remains enigmatic. Recently we reported that a protein called FLOE1 is involved in sensing and responding to water availability during germination. Here, we present a live-imaging protocol to assess the subcellular localization of a protein of interest during imbibition of desiccated Arabidopsis thaliana seeds with the goal of understanding protein dynamics during the early stages of water uptake. For complete details on the use and execution of this profile, please refer to Dorone et al. (2021).