Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Adv Exp Med Biol ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38848019

RESUMEN

Lipids are a diverse group of compounds that play several important roles in insect physiology. Among biological lipids, the fundamental category comprises fatty acyl structures, with significant members being fatty acids (FAs). They play several crucial functions in insect physiology; they are used as the source of energy for flight and play key roles in the insect immune system. The FAs present in the insect cuticle are known to demonstrate antibacterial and antifungal activity and are considered as potential insecticides. The most abundant family of lipids are the glycerolipids, with numerous cellular functions including storage of energy, structural compartmentation of cells and organelles, and important signaling activities required for regulation of physiological processes (i.e., growth, development, reproduction, diapause, and overwintering). The phospholipids are also highly diversified key components of all cell membranes; they can modify cellular components in response to rapid cold-hardening (RCH), enhancing membrane fluidity and improving survival at low temperatures. The sphingolipids are important structural and signaling bioactive compounds, mostly detected in membranes.Insects are sterol-auxotrophs: they do not have genes, which code enzymes converting farnesyl pyrophosphate to squalene. Similarly, to mammals, the production of steroids in insects is regulated by cytochrome P450 enzymes that convert sterols (mostly cholesterol) to hormonally active steroids. The major molting hormone in insects is 20-hydroxyecdysone, and cholesterol is the required precursor; however, several exemptions from this rule have been noted. This manuscript also reviews the roles of prenol lipids, isoprenoids, lipid vitamins, polyketides, and waxes in the vital processes of insects.

2.
Front Immunol ; 15: 1385863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774871

RESUMEN

Background: In response to the replace mammal research models with insects in preliminary immunological studies, interest has grown in invertebrate defense systems. The immunological response is regulated by cytokines; however, while their role in mammals is well understood, little is known of their function in insects. A suitable target for studies into insect immunology is Galleria mellonella (Lepidoptera), the wax moth: a common host for human fungal and bacterial pathogens. G. mellonella is also a perfect subject for studies into the presence of cytokine-like proteins. Specific objectives: The main goal of present research was detection in insect immunocompetent cells the 18 mammalian cytokines (IL-1α, IL-1ß, IL-2, IL-3, IL-6, IL-7, IL-8, IL-12, IL-13, IL-15, IL-17, IL-19, IFN-γ, TNF-α, TNF-ß, GM-CSF, M-CSF, G-CSF), which play important role in immunological response and indication how their level change after fungal infection. Methodology: The changes of cytokine-like proteins level were detected in hemocytes taken from G. mellonella larvae infected with entomopathogenic fungus, C. coronatus. The presence of cytokine-proteins was confirmed with using fluorescence microscopy (in cultured hemocytes) and flow cytometry (in freshly collected hemolymph). The ELISA test was used to detect changes in concentration of examined cytokine-like proteins. Results: Our findings indicated the presence of eighteen cytokine-like molecules in G. mellonella hemocytes during infection with C. coronatus. The hemocytes taken from infected larvae demonstrated higher fluorescence intensity for six cytokine-like proteins (GM-CSF, M-CSF, IL-3, IL-15, IL-1ß and IL-19) compared to untreated controls. ELISA test indicated significantly higher IL-3 and IL-15. M-CSF, IL-1α and IL-19 concentration in the hemolymph after fungal infection, and significantly lower TNF-ß and G-CSF. Conclusions: Our findings confirm that the selected cytokine-like molecules are present in insect hemocytes and that their concentrations change after fungal infection, which might suggest that they play a role in the anti-fungal immunological response.


Asunto(s)
Conidiobolus , Citocinas , Larva , Mariposas Nocturnas , Animales , Conidiobolus/inmunología , Larva/inmunología , Larva/microbiología , Citocinas/metabolismo , Citocinas/inmunología , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/microbiología , Hemocitos/inmunología , Hemocitos/metabolismo , Hemocitos/microbiología , Proteínas de Insectos/inmunología , Proteínas de Insectos/metabolismo , Cigomicosis/inmunología , Cigomicosis/metabolismo
3.
Insects ; 14(11)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37999094

RESUMEN

The mechanisms underlying the recognition of a susceptible host by a fungus and the role of cuticular compounds (CCs) in this process remain unclear; however, accumulated data suggest that this is influenced to a great degree by cuticular lipids. Two insect species differing in their sensitivity to fungal infection, viz. the highly sensitive Galleria mellonella Linnaeus (Lepidoptera: Pyralidae) and the resistant Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae), exhibited significant qualitative and quantitative changes in cuticular free fatty acid (FFA) profiles after exposure to Conidiobolus coronatus (Constantin) Batko (Entomopthorales). Despite being systematically distant, leading different lifestyles in different habitats, both insect species demonstrated similar changes in the same FFAs following exposure to the fungus (C12:0, C13:0, C14:0, C15:0, C16:1, C16:0, C18:1, C18:0), suggesting that these are involved in a contact-induced defense response. As it was not possible to distinguish the share of FFAs present in the conidia that were attached to the cuticle from the FFAs of the cuticle itself in the total number of extracted FFAs, further research is necessary.

4.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37373316

RESUMEN

Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, their role in insects is not fully understood; thus, more indepth studies of insect cell apoptosis are necessary. The present study investigates mitochondrial involvement during Conidiobolus coronatus-induced apoptosis in Galleria mellonella hemocytes. Previous research has shown that fungal infection could induce apoptosis in insect hemocytes. Our findings indicate that mitochondria undergo several morphological and physiological changes during fungal infection, e.g., loss of mitochondrial membrane potential, megachannel formation, disturbances in intracellular respiration, increased nonrespiratory oxygen consumption in mitochondria, decreased ATP-coupled oxygen consumption and increased non-ATP-coupled oxygen consumption, decreased extracellular and intracellular oxygen consumption, and increased extracellular pH. Our findings confirm that G. mellonella immunocompetent cells demonstrate Ca2+ overload in mitochondria, translocation of cytochrome c-like protein from mitochondrial to cytosol fraction, and higher activation of caspase-9-like protein after C. coronatus infection. Most importantly, several of the changes observed in insect mitochondria are similar to those accompanying apoptosis in mammalian cells, suggesting that the process is evolutionarily conserved.


Asunto(s)
Entomophthorales , Mariposas Nocturnas , Animales , Larva/microbiología , Mariposas Nocturnas/microbiología , Insectos , Apoptosis , Mitocondrias , Mamíferos
5.
Front Genet ; 14: 1183659, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37359377

RESUMEN

The relationship between insect pathogenic fungi and their insect hosts is a classic example of a co-evolutionary arms race between pathogen and target host: parasites evolve towards mechanisms that increase their advantage over the host, and the host increasingly strengthens its defenses. The present review summarizes the literature data describing the direct and indirect role of lipids as an important defense mechanism during fungal infection. Insect defense mechanisms comprise anatomical and physiological barriers, and cellular and humoral response mechanisms. The entomopathogenic fungi have the unique ability to digest the insect cuticle by producing hydrolytic enzymes with chitin-, lipo- and proteolytic activity; besides the oral tract, cuticle pays the way for fungal entry within the host. The key factor in insect resistance to fungal infection is the presence of certain types of lipids (free fatty acids, waxes or hydrocarbons) which can promote or inhibit fungal attachment to cuticle, and might also have antifungal activity. Lipids are considered as an important source of energy, and as triglycerides are stored in the fat body, a structure analogous to the liver and adipose tissue in vertebrates. In addition, the fat body plays a key role in innate humoral immunity by producing a range of bactericidal proteins and polypeptides, one of which is lysozyme. Energy derived from lipid metabolism is used by hemocytes to migrate to the site of fungal infection, and for phagocytosis, nodulation and encapsulation. One polyunsaturated fatty acid, arachidonic acid, is used in the synthesis of eicosanoids, which play several crucial roles in insect physiology and immunology. Apolipoprotein III is important compound with antifungal activity, which can modulate insect cellular response and is considered as important signal molecule.

6.
PLoS One ; 18(1): e0280810, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36662824

RESUMEN

A range of analytical methods (GC-MS, LC-MS, voltammetry, microbiological and microscopic techniques, PCR) was used to assay a range of potential chemical and biological contaminants in soil and dandelion samples. The results provide the first comprehensive safety analysis of dandelion as a herbal product. Samples were collected from three different sites in Poland where the local population collects dandelion plants for their own consumption: Rudenka (a mountain meadow in the European Ecological Network of Natura 2000 protection area, free of agrotechnical treatments for over 30 years), Warszawa 1 (dense single-family housing with heavy traffic), and Warszawa 2 (recreation area with heavy traffic near a coal-fired heat and power plant). The assays of heavy metals and other chemical pollutants (PAHs, PCBs, dioxins, pesticides, mycotoxins) confirm that all collected soil and dandelion samples were chemically pure; however, 95 species of pathogenic bacteria were detected, including "carnivorous" Vibrio vulnificus, zoonotic Pasteurella pneumotropica, Pasteurella canis, Staphylococcus pseudintermedius, Staphylococcus lentus and Francisella tularensis as well as 14 species of pathogenic fungi and one protozoan parasite (Giardia intestinalis). The discovery of septicemia agents V. vulnificus, Fusobacterium mortiferum and Rahnella aquatilis in the soil surrounding dandelion roots and in the flowers, G. intestinalis in dandelion leaves and roots samples, all collected in Warsaw, is highly disturbing. This finding underlines the need for increased caution when collecting dandelion in densely populated areas with a large population of pets. Thorough washing of the harvested plants is necessary before using them for consumption, especially in the case of making salads from fresh dandelion leaves, which is becoming increasingly popular among people leading healthy and an environmentally friendly lifestyle.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Contaminantes del Suelo , Taraxacum , Humanos , Contaminantes Ambientales/análisis , Suelo , Metales Pesados/análisis , Hojas de la Planta/química , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
7.
PLoS One ; 17(9): e0274120, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36173940

RESUMEN

Invertebrates are becoming increasingly popular models for research on the immune system. The innate immunity possessed by insects shows both structural and functional similarity to the resistance displayed by mammals, and many processes occurring in insect hemocytes are similar to those that occur in mammals. However, the use of insects as research models requires the development of methods for working with hemocytes. The aim of this study was to develop a protocol for intracellular cytokine detection in Galleria mellonella larvae hemocytes based on flow cytometry. It describes the anticoagulant composition of the buffer, the optimal conditions for hemocyte permeabilization and fixation, as well as the conditions of cell centrifugation to prevent cell disintegration. A key element is the selection of staining conditions, especially the length of the incubation time with the primary antibody, which turned out to be much longer than recommended for mammalian cells. The development of these individual steps allowed for the creation of a reproducible protocol for cytokine detection using flow cytometry in wax moth hemocytes. This will certainly facilitate the development of further protocols allowing for wider use of insect cells in immunological research.


Asunto(s)
Hemocitos , Mariposas Nocturnas , Animales , Anticoagulantes , Citocinas , Citometría de Flujo , Larva , Mamíferos
8.
Sci Rep ; 12(1): 13641, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948615

RESUMEN

Mycoses are a global problem that affects humans and animals. In the present study, the entomopathogenic soil fungus Conidiobolus coronatus (Entomophthorales), infecting in tropics also humans, sheep and horses, was cultivated with the addition of insect cuticular compounds (CCs) previously detected in the cuticle of C. coronatus-resistant fly species (C10-C30 fatty alcohols, butyl oleate, butyl stearate, glycerol oleate, squalene, tocopherol acetate). Our findings indicate that CCs have diversified and complex effects on the growth and sporulation of C. coronatus and its ability to infect the larvae of Galleria mellonella (Lepidoptera). The CCs affected protein content and cuticle-degrading enzymes (CDEs) activity in the conidia. Some CCs inhibited fungal growth (0.1% C10), decreased sporulation (C12, C16, C24, C28, C30, butyl stearate, squalene), virulence (C12, C14, butyl oleate, butyl stearate) and protein content (C18). They also reduced conidial CDE activity: elastase (C24, butyl oleate, butyl stearate, squalene, tocopherol acetate), chitobiosidase (C12, C14, C20) and lipase (C12, C18, C26, squalene, tocopherol acetate). Several CCs enhanced sporulation (C14, C18, C22, C26, C30), virulence (C18, C26, squalene), conidial protein content (C16, C24, C30, squalene) and CDE activity: elastase (C10, C16, C18), NAGase (C16, C20), chitobiosidase (C16) and lipase (C10, C14, C16, C20, butyl oleate). Our findings indicate that C. coronatus colonies grown on media supplemented with CCs employ various compensation strategies: colonies grown with C16 alcohol demonstrated reduced sporulation but greater conidial protein accumulation and increased elastase, NAGase, chitobiosidase and lipase activity, thus preserving high virulence. Also, colonies supplemented with C18 alcohol demonstrated high virulence and enhanced sporulation and elastase activity but slightly decreased conidial protein content. CCs that inhibit the activity of lipases and proteases show promise in the fight against conidiobolomycosis.


Asunto(s)
Mariposas Nocturnas , Cigomicosis , Acetilglucosaminidasa/metabolismo , Animales , Conidiobolus , Ácidos Grasos/metabolismo , Caballos , Humanos , Insectos/metabolismo , Lipasa/metabolismo , Ácido Oléico/metabolismo , Ácido Oléico/farmacología , Elastasa Pancreática/metabolismo , Ovinos , Esporas Fúngicas/metabolismo , Escualeno/metabolismo , alfa-Tocoferol/metabolismo
9.
Int J Mol Sci ; 23(9)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35563592

RESUMEN

The food flavour additive octanoic acid (C8:0) is also a metabolite of the entomopathogenic fungus Conidiobolus coronatus, which efficiently infects and rapidly kills Galleria mellonella. GC-MS analysis confirmed the presence of C8:0 in insecticidal fraction FR3 extracted from C. coronatus filtrate. Topical administration of C8:0 had a dose-dependent effect on survival rates of larvae but not on pupation or adult eclosion times of the survivors. Topically applied C8:0 was more toxic to adults than larvae (LD100 for adults 18.33 ± 2.49 vs. 33.56 ± 2.57 µg/mg of body mass for larvae). The administration of C8:0 on the cuticle of larvae and adults, in amounts corresponding to their LD50 and LD100 doses, had a considerable impact on the two main defense systems engaged in protecting against pathogens, causing serious changes in the developmental-stage-specific profiles of free fatty acids (FFAs) covering the cuticle of larvae and adults and damaging larval hemocytes. In vitro cultures of G. mellonella hemocytes, either directly treated with C8:0 or taken from C8:0 treated larvae, revealed deformation of hemocytes, disordered networking, late apoptosis, and necrosis, as well as caspase 1-9 activation and elevation of 8-OHdG level. C8:0 was also confirmed to have a cytotoxic effect on the SF-9 insect cell line, as determined by WST-1 and LDH tests.


Asunto(s)
Insecticidas , Lepidópteros , Mariposas Nocturnas , Animales , Antifúngicos/farmacología , Caprilatos/farmacología , Conidiobolus , Hemocitos/metabolismo , Insecticidas/metabolismo , Insecticidas/farmacología , Larva/metabolismo , Lepidópteros/microbiología , Mariposas Nocturnas/microbiología
10.
Insects ; 12(11)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34821771

RESUMEN

The chemical composition of the insect cuticle varies remarkably between species and their life stages. It can affect host resistance and substrate utilization by invading entomopathogen fungi, such as the soil fungus Conidiobolus coronatus. In this study, Sarcophaga argyrostoma flies were exposed to sporulating C. coronatus colonies for 24 h; the pupae were resistant, but the adults demonstrated 60% mortality. Although the pupae demonstrated no sign of infection nor any abnormal development, our findings indicate that after 24 h of contact with the fungus, the pupae demonstrated a 25.2-fold increase in total cuticular free fatty acids (FFAs) and a 1.9-fold decrease in total internal FFAs. Also, the cuticular FFA increased from 26 to 30, while the internal FFA class increased from 13 to 23. In exposed adults, the total mass of cuticular FFAs increased 1.7-fold, while the number of FFAs stayed the same (32 FFAs). Also, the internal FFA class increased from 26 to 35 and the total FFA mass increased 1.1-fold. These considerable differences between adults and pupae associated with C. coronatus exposure indicate developmental changes in the mechanisms governing lipid metabolism and spatial distribution in the organism, and suggest that cuticular lipids play a vital role in the defence against pathogenic fungi.

11.
Sci Rep ; 11(1): 15963, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354188

RESUMEN

One group of promising pest control agents are the entomopathogenic fungi; one such example is Conidiobolus coronatus, which produces a range of metabolites. Our present findings reveal for the first time that C. coronatus also produces dodecanol, a compound widely used to make surfactants and pharmaceuticals, and enhance flavors in food. The main aim of the study was to determine the influence of dodecanol on insect defense systems, i.e. cuticular lipid composition and the condition of insect immunocompetent cells; hence, its effect was examined in detail on two species differing in susceptibility to fungal infection: Galleria mellonella and Calliphora vicina. Dodecanol treatment elicited significant quantitative and qualitative differences in cuticular free fatty acid (FFA) profiles between the species, based on gas chromatography analysis with mass spectrometry (GC/MS), and had a negative effect on G. mellonella and C. vicina hemocytes and a Sf9 cell line in vitro: after 48 h, almost all the cells were completely disintegrated. The metabolite had a negative effect on the insect defense system, suggesting that it could play an important role during C. coronatus infection. Its high insecticidal activity and lack of toxicity towards vertebrates suggest it could be an effective insecticide.


Asunto(s)
Conidiobolus/metabolismo , Dodecanol/metabolismo , Dodecanol/farmacología , Animales , Calliphoridae , Conidiobolus/química , Conidiobolus/patogenicidad , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Hongos/química , Hongos/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Hemocitos/metabolismo , Inmunidad Celular/efectos de los fármacos , Inmunidad Celular/inmunología , Insectos/metabolismo , Insecticidas , Larva/metabolismo , Mariposas Nocturnas/metabolismo
12.
PLoS One ; 16(4): e0251100, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33930098

RESUMEN

Aedes aegypti, the primary vector of various arthropod-borne viral (arboviral) diseases such as dengue and Zika, is a popular laboratory model in vector biology. However, its maintenance in laboratory conditions is difficult, mostly because the females require blood meals to complete oogenesis, which is often provided as sheep blood. The outermost layer of the mosquito cuticle is consists of lipids which protects against numerous entomopathogens, prevents desiccation and plays an essential role in signalling processes. The aim of this work was to determine how the replacement of human blood with sheep blood affects the cuticular and internal FFA profiles of mosquitoes reared in laboratory culture. The individual FFAs present in cuticular and internal extracts from mosquito were identified and quantified by GC-MS method. The normality of their distribution was checked using the Kolmogorov-Smirnov test and the Student's t-test was used to compare them. GC-MS analysis revealed similar numbers of internal and cuticular FFAs in the female mosquitoes fed sheep blood by membrane (MFSB) and naturally fed human blood (NFHB), however MFSB group demonstrated 3.1 times greater FFA concentrations in the cuticular fraction and 1.4 times the internal fraction than the NFHB group. In the MFSB group, FFA concentration was 1.6 times higher in the cuticular than the internal fraction, while for NFHB, FFA concentration was 1.3 times lower in the cuticular than the internal fraction. The concentration of C18:3 acid was 223 times higher in the internal fraction than the cuticle in the MHSB group but was absent in the NFHB group. MFSB mosquito demonstrate different FFA profiles to wild mosquitoes, which might influence their fertility and the results of vital processes studied under laboratory conditions. The membrane method of feeding mosquitoes is popular, but our research indicates significant differences in the FFA profiles of MFSB and NFHB. Such changes in FFA profile might influence female fertility, as well as other vital processes studied in laboratory conditions, such as the response to pesticides. Our work indicates that sheep blood has potential shortcomings as a substitute feed for human blood, as its use in laboratory studies may yield different results to those demonstrated by free-living mosquitoes.


Asunto(s)
Aedes/fisiología , Ácidos Grasos no Esterificados/metabolismo , Fertilidad/fisiología , Cromatografía de Gases y Espectrometría de Masas/métodos , Mosquitos Vectores/metabolismo , Aedes/parasitología , Animales , Femenino , Humanos , Mosquitos Vectores/parasitología , Ovinos
13.
PLoS One ; 16(3): e0248772, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33735295

RESUMEN

The economic losses and threats to human and animal health caused by insects and the pathogens transmitted by them require effective and environmentally-friendly methods of controlling them. One such group of natural biocontrol agents which may be used as biopesticides is that of the entomopathogenic fungi and their toxic secondary metabolites (mycotoxins). The present in vitro work examined the insecticidal potential of 65 commercially-available mycotoxins against the insect Sf-9 cell line. Mammalian Caco-2 and THP-1 cell lines served as reference controls to select insecticidal mycotoxins harmless to mammalian cells. All tested mycotoxins significantly reduced the in vitro proliferation of the Sf-9 cells and evoked morphological changes. Ten of the mycotoxins found to strongly inhibit Sf-9 proliferation also had moderate or no effect on Caco-2 cells. The THP-1 cells were highly resistant to the tested mycotoxins: doses 103 times higher were needed to affect viability and morphology (1 µg/ml for THP-1 versus 1 ng/ml for Sf-9 and Caco-2). Nine mycotoxins significantly decreased Sf-9 cell proliferation with minor effects on mammalian cells: cyclosporins B and D, cytochalasin E, gliotoxin, HC toxin, paxilline, penitrem A, stachybotrylactam and verruculogen. These may be good candidates for future biopesticide formulations.


Asunto(s)
Insecticidas/toxicidad , Micotoxinas/análisis , Micotoxinas/toxicidad , Animales , Células CACO-2 , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Células Sf9 , Células THP-1
14.
Front Physiol ; 12: 774086, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069239

RESUMEN

Apoptosis and autophagy, the mechanisms of programmed cell death, play critical roles in physiological and pathological processes in both vertebrates and invertebrates. Apoptosis is also known to play an important role in the immune response, particularly in the context of entomopathogenic infection. Of the factors influencing the apoptotic process during infection, two of the lesser known groups are caspases and eicosanoids. The aim of this study was to determine whether infection by the entomopathogenic soil fungus Conidiobolus coronatus is associated with apoptosis and changes in caspase activity in the hemocytes of Galleria mellonella larvae, and to confirm whether fungal infection may affect eicosanoid levels in the host. Larvae were exposed for 24 h to fully grown and sporulating fungus. Hemolymph was collected either immediately after termination of exposure (F24 group) or 24 h later (F48 group). Apoptosis/necrosis tests were performed in hemocytes using fluorescence microscopy and flow cytometry, while ELISA tests were used to measure eicosanoid levels. Apoptosis and necrosis occurred to the same degree in F24, but necrosis predominated in F48. Fungal infection resulted in caspase activation, increased PGE1, PGE2, PGA1, PGF2α, and 8-iso-PGF2α levels and decreased TXB2 levels, but had no effect on TXA2 or 11-dehydro-TXB2 concentrations. In addition, infected larvae demonstrated significantly increased PLA2 activity, known to be involved in eicosanoid biosynthesis. Our findings indicate that fungal infection simultaneously induces apoptosis in insects and stimulates general caspase activity, and this may be correlated with changes in the concentrations of eicosanoids.

15.
Sci Rep ; 10(1): 17337, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060748

RESUMEN

The flies of the Sarcophagidae, widespread throughout the temperate zone, are of great significance in Medicine, Veterinary science, Forensics and Entomotoxicology. Lipids are important elements of cell and organelle membranes and a source of energy for embryogenesis, metamorphosis and flight. Cuticular lipids protect from desiccation and act as recognition cues for species, nest mates and castes, and are a source of various pheromones. The free fatty acid (FFA) profile of cuticular and internal extracts of Sarcophaga (Liopygia) argyrostoma (Robineau-Desvoidy, 1830) larvae, pupae and adults was determined by gas chromatography-mass spectrometry (GC-MS). The larvae, pupae and adults contained FFAs from C5:0 to C28:0. The extracts differed quantitatively and qualitatively from each other: C18:1 > C16:1 > C16:0 > C18:0 predominated in the cuticular and internal extracts from the larvae and adults, while 18:1 > C16:0 > C16:1 > C18:0 predominated in the pupae. The FFA profile of the cuticle varies considerably between each development stage: C23:0 and C25:0 are only present in larvae, C28:0 in the pupal cuticle, and C12:1 and C18:3 in internal extracts from adults. The mechanisms underlying this diversity are discussed herein.


Asunto(s)
Ácidos Grasos no Esterificados/metabolismo , Metamorfosis Biológica , Sarcofágidos/metabolismo , Animales , Cromatografía de Gases y Espectrometría de Masas/métodos , Larva/metabolismo
16.
PLoS One ; 15(7): e0235785, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32645074

RESUMEN

The interactions between entomopathogenic fungi and insects serve a classic example of a co-evolutionary arms race between pathogens and their target host. The cuticle, site of the first contact between insects and entomopathogenic fungus, is an important defensive barrier against pathogens. It is covered by a layer of lipids that appears to play a key role in these processes and cuticular free fatty acid (FFA) profiles are consider as a determinant of susceptibility, or resistance, to fungal infections. These profiles are species-specific. The cockroaches Blattella germanica (Blattodea: Blattidae) and Blatta orientalis (Blattodea: Ectobiidae) are unsusceptible to the soil fungus Conidiobolus coronatus (Entomophthorales: Ancylistaceae) infection, therefore we studied the profiles of FFAs in order to understand the defensive capabilities of the cockroaches. The fungus was cultivated for three weeks in minimal medium. Cell-free filtrate was obtained, assayed for elastase, N-acetylglucosaminidase, chitobiosidase and lipase activity, and then used for in vitro hydrolysis of the cuticle from wings and thoraces of adults and oothecae. The amounts of amino acids, N-glucosamine and FFAs released from the hydrolysed cuticle samples were measured after eight hours of incubation. The FFA profiles of the cuticle of adults, and the wings, thoraces and oothecae of both species were established using GC-MS and the results were correlated with the effectiveness of fungal proteases, chitinases and lipases in the hydrolyzation of cuticle samples. Positive correlations would suggest the existence of compounds used by the fungus as nutrients, whereas negative correlations may indicate that these compounds could be engaged in insect defence.


Asunto(s)
Cucarachas/microbiología , Conidiobolus/fisiología , Ácidos Grasos/metabolismo , Proteínas Fúngicas/metabolismo , Hidrolasas/metabolismo , Animales , Cucarachas/metabolismo , Femenino , Interacciones Huésped-Patógeno , Masculino
17.
PLoS One ; 15(2): e0228407, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32012188

RESUMEN

Cell homeostasis requires the correct levels of reactive oxygen species (ROS) to be maintained as these regulate the proliferation and differentiation of cells, and control the immune response and inflammation. High levels of ROS can cause oxidative stress, leading to protein, lipid and DNA damage, or even cell death. Under physiological conditions, the rate of autophagy remains stable; however, it can be accelerated by a number of exogenous stimuli such as oxidative stress, starvation or hypoxia, leading to cell death. The present paper examines the effect of Conidiobolus coronatus infection on the immune response, oxidative stress processes and autophagy in the greater wax moth, Galleria mellonella. Fungal infection was found to result in the disorganization of the cytoskeleton of the larval immune cells and the enhancement of oxidative defense processes. Lipid peroxidation and autophagy were also induced in the hemocytes. Our findings show that G. mellonella is an ideal model for exploring immune mechanisms.


Asunto(s)
Autofagia , Conidiobolus/patogenicidad , Hemocitos/inmunología , Interacciones Huésped-Patógeno/inmunología , Larva/inmunología , Mariposas Nocturnas/inmunología , Estrés Oxidativo , Animales , Hemocitos/microbiología , Larva/microbiología , Mariposas Nocturnas/microbiología
18.
PLoS One ; 15(2): e0228556, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32027696

RESUMEN

Invertebrates are becoming more popular models for research on the immune system. The innate immunity possessed by insects shows both structural and functional similarity to the resistance displayed by mammals, and many processes occurring in insect hemocytes are similar to those that occur in mammals. The humoral immune response in insects acts by melanization, clotting and the production of reactive oxygen species and antimicrobial peptides, while the cellular immunity system is based on nodulation, encapsulation and phagocytosis. An increasingly popular insect model in biological research is Galleria mellonella, whose larvae are sensitive to infection by the entomopathogenic fungus Conidiobolus coronatus, which can also be dangerous to humans. One group of factors that modulate the response of the immune system during infection in mammals are heat shock proteins (HSPs). The aim of this study was to investigate whether infection by C. coronatus in G. mellonella hemolymph is accompanied by an increase of HSP90, HSP70, HSP60 and HSP27. Larvae (five-day-old last instar) were exposed for 24 hours to fully-grown and sporulating fungus. Hemolymph was collected either immediately after termination of exposure (F24) or 24 hours later (F48). The concentration of the HSPs in hemolymph was determined using ELISA. Immunolocalization in hemocytes was performed using fluorescence microscopy and flow cytometry. HSP90, HSP70, HSP60 and HSP27 were found to be present in the G. mellonella hemocytes. HSP60 and HSP90 predominated in healthy insects, with HSP70 and HSP27 being found in trace amounts; HSP60 and HSP27 were elevated in F24 and F48, and HSP90 was elevated in F48. The fungal infection had no effect on HSP70 levels. These findings shed light on the mechanisms underlying the interaction between the innate insect immune response and entomopathogen infection. The results of this innovative study may have a considerable impact on research concerning innate immunology and insect physiology.


Asunto(s)
Conidiobolus/patogenicidad , Proteínas de Choque Térmico/metabolismo , Hemolinfa/química , Lepidópteros/química , Cigomicosis/inmunología , Animales , Proteínas de Choque Térmico/análisis , Proteínas de Choque Térmico/inmunología , Hemocitos/metabolismo , Hemolinfa/microbiología , Humanos , Inmunidad Innata , Larva/microbiología , Lepidópteros/inmunología , Lepidópteros/microbiología , Factores de Tiempo , Regulación hacia Arriba
19.
Cell Biosci ; 9: 29, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30962871

RESUMEN

BACKGROUND: Although the ß-carboline alkaloids harman and norharman are considered as plant metabolites, they can also be secreted by fungi such as the entomopathogen Conidiobolus coronatus. Norharman and harman are also known to be reversible competitive monamine oxidase inhibitors, which increase serotonin concentrations in tissues. In addition, these alkaloids are able to bind to serotonin receptors, an important immune regulatory molecule in both vertebrates and invertebrates. In insects, serotonin modulates hemocyte phagocytosis, nodule formation and the populations of hemocyte classes. The present study examines whether harman and norharman may influence the phagocytic activity of insect hemocytes by regulating serotonin levels. RESULTS: Significantly greater serotonin levels and hemocyte phagocytic activity were observed after 24 h of exposure to food contaminated with harman and norharman. Similar responses were noticed 1 h after topical application or addition to in vitro hemocyte cultures. Observations and measurements performed 24 h later revealed decreased responses, suggesting decomposition and/or exertion of alkaloids and/or serotonin. Harman and norharman influenced the activity of Galleria mellonella plasmatocytes and the granulocyte cytoskeleton. Disturbances in hemocyte network formation, abnormal cell shape, naked nuclei, cell aggregates, fragments of disintegrated cells, interrupted cell membrane continuity and actin condensation in cells were observed. CONCLUSION: Our findings may have a considerable impact on research concerning insect physiology, parasitology, immunology and biocontrol of pests. They confirm for the first time that harman and norharman (metabolites of the entomopathogenic fungus C. coronatus) elevate serotonin levels in G. mellonella hemocytes, thus potentially stimulating their phagocytic activity. Our studies shed light on the mechanisms underlying the interaction between innate insect immune responses and entomopathogen metabolites.

20.
PLoS One ; 14(2): e0211697, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30730940

RESUMEN

The evolutionary success of insects is arguably due to their ability to build up a complex, highly-adaptable and very effective defense system against numerous pathogens, including entomopathogenic fungi. This system relies on the humoral immune system and cellular defense reactions. The first line of defense against biological pathogens is a cuticle formed of several layers. The cuticular lipids may contain hydrocarbons, free fatty acids (FFA), alcohols, waxes, glycerides, aldehydes and sterols. Cuticular fatty acids may also play a role in defending against fungal invasion. Our present findings show that the diet of insects can have a significant effect on their sensitivity and defense response to pathogens; for example, while G. mellonella larvae fed on beeswax had a similar appearance to those reared on a semi-artificial diet, they possessed a different cuticular free fatty acid (FFA) profile to those fed on a semi-artificial diet, and were less sensitive to Conidiobolus coronatus infection. It is possible that the presence of heneicosenoic acid (C21:1) and other long-chain free fatty acids (C22:0, C24:0, C26:0), as well as Brevibacillus laterosporus bacteria, on the cuticle of larvae fed on beeswax, plays a protective role against fungal invasion. Insect pests represent a global problem. An understanding of the basic mechanisms underlying the fungal infection of insects might provide a clearer insight into their defenses, thus allowing the design of more effective, and environmentally-friendly, means of controlling them. The greater wax moth is an excellent model for the study of immunology resistance. Knowledge of the influence of diet on pathogen resistance in insects can be also useful for creating a model of human diseases caused by pathogens, such as Candia albicans.


Asunto(s)
Ácidos Grasos/metabolismo , Larva/metabolismo , Larva/microbiología , Lepidópteros/metabolismo , Lepidópteros/microbiología , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/microbiología , Animales , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/microbiología , Brevibacillus/patogenicidad , Conidiobolus/patogenicidad , Dieta , Ceras/metabolismo , Cigomicosis/metabolismo , Cigomicosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA