Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
2.
J Biol Chem ; 299(1): 102768, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470426

RESUMEN

The KRAS gene is one of the most frequently mutated oncogenes in human cancer and gives rise to two isoforms, KRAS4A and KRAS4B. KRAS post-translational modifications (PTMs) have the potential to influence downstream signaling. However, the relationship between KRAS PTMs and oncogenic mutations remains unclear, and the extent of isoform-specific modification is unknown. Here, we present the first top-down proteomics study evaluating both KRAS4A and KRAS4B, resulting in 39 completely characterized proteoforms across colorectal cancer cell lines and primary tumor samples. We determined which KRAS PTMs are present, along with their relative abundance, and that proteoforms of KRAS4A versus KRAS4B are differentially modified. Moreover, we identified a subset of KRAS4B proteoforms lacking the C185 residue and associated C-terminal PTMs. By confocal microscopy, we confirmed that this truncated GFP-KRAS4BC185∗ proteoform is unable to associate with the plasma membrane, resulting in a decrease in mitogen-activated protein kinase signaling pathway activation. Collectively, our study provides a reference set of functionally distinct KRAS proteoforms and the colorectal cancer contexts in which they are present.


Asunto(s)
Neoplasias Colorrectales , Proteínas Quinasas Activadas por Mitógenos , Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal , Humanos , Neoplasias Colorrectales/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Línea Celular Tumoral , Proteómica , Proteínas Quinasas Activadas por Mitógenos/metabolismo
3.
Cell ; 184(19): 5031-5052.e26, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34534465

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient survival. Toward understanding the underlying molecular alterations that drive PDAC oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, and glycoproteomic analyses were used to characterize proteins and their modifications. In addition, whole-genome sequencing, whole-exome sequencing, methylation, RNA sequencing (RNA-seq), and microRNA sequencing (miRNA-seq) were performed on the same tissues to facilitate an integrated proteogenomic analysis and determine the impact of genomic alterations on protein expression, signaling pathways, and post-translational modifications. To ensure robust downstream analyses, tumor neoplastic cellularity was assessed via multiple orthogonal strategies using molecular features and verified via pathological estimation of tumor cellularity based on histological review. This integrated proteogenomic characterization of PDAC will serve as a valuable resource for the community, paving the way for early detection and identification of novel therapeutic targets.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteogenómica , Adenocarcinoma/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Carcinoma Ductal Pancreático/diagnóstico , Estudios de Cohortes , Células Endoteliales/metabolismo , Epigénesis Genética , Femenino , Dosificación de Gen , Genoma Humano , Glucólisis , Glicoproteínas/biosíntesis , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Neoplasias Pancreáticas/diagnóstico , Fenotipo , Fosfoproteínas/metabolismo , Fosforilación , Pronóstico , Proteínas Quinasas/metabolismo , Proteoma/metabolismo , Especificidad por Sustrato , Transcriptoma/genética
4.
Cell ; 183(5): 1436-1456.e31, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33212010

RESUMEN

The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles tumors more comprehensively. Here this "proteogenomics" approach was applied to 122 treatment-naive primary breast cancers accrued to preserve post-translational modifications, including protein phosphorylation and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed analysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phosphoproteomics profiles uncovered novel associations between tumor suppressor loss and targetable kinases. Acetylproteome analysis highlighted acetylation on key nuclear proteins involved in the DNA damage response and revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results underscore the potential of proteogenomics for clinical investigation of breast cancer through more accurate annotation of targetable pathways and biological features of this remarkably heterogeneous malignancy.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Carcinogénesis/patología , Terapia Molecular Dirigida , Proteogenómica , Desaminasas APOBEC/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Estudios de Cohortes , Daño del ADN , Reparación del ADN , Femenino , Humanos , Inmunoterapia , Metabolómica , Persona de Mediana Edad , Mutagénesis/genética , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Receptor ErbB-2/metabolismo , Proteína de Retinoblastoma/metabolismo , Microambiente Tumoral/inmunología
5.
Cell Rep ; 33(3): 108276, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33086064

RESUMEN

Many gene products exhibit great structural heterogeneity because of an array of modifications. These modifications are not directly encoded in the genomic template but often affect the functionality of proteins. Protein glycosylation plays a vital role in proper protein functions. However, the analysis of glycoproteins has been challenging compared with other protein modifications, such as phosphorylation. Here, we perform an integrated proteomic and glycoproteomic analysis of 83 prospectively collected high-grade serous ovarian carcinoma (HGSC) and 23 non-tumor tissues. Integration of the expression data from global proteomics and glycoproteomics reveals tumor-specific glycosylation, uncovers different glycosylation associated with three tumor clusters, and identifies glycosylation enzymes that were correlated with the altered glycosylation. In addition to providing a valuable resource, these results provide insights into the potential roles of glycosylation in the pathogenesis of HGSC, with the possibility of distinguishing pathological outcomes of ovarian tumors from non-tumors, as well as classifying tumor clusters.


Asunto(s)
Cistadenocarcinoma Seroso/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Biomarcadores de Tumor/metabolismo , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patología , Femenino , Glicoproteínas/metabolismo , Glicosilación , Humanos , Neoplasias Ováricas/patología , Proteómica/métodos , Bancos de Tejidos
7.
Cell ; 182(1): 200-225.e35, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32649874

RESUMEN

To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteogenómica , Adenocarcinoma del Pulmón/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Variaciones en el Número de Copia de ADN/genética , Metilación de ADN/genética , Femenino , Humanos , Neoplasias Pulmonares/inmunología , Masculino , Persona de Mediana Edad , Mutación/genética , Proteínas de Fusión Oncogénica , Fenotipo , Fosfoproteínas/metabolismo , Proteoma/metabolismo
8.
Cell Rep Med ; 1(1)2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32529193

RESUMEN

In the absence of a dominant driving mutation other than uniformly present TP53 mutations, deeper understanding of the biology driving ovarian high-grade serous cancer (HGSC) requires analysis at a functional level, including post-translational modifications. Comprehensive proteogenomic and phosphoproteomic characterization of 83 prospectively collected ovarian HGSC and appropriate normal precursor tissue samples (fallopian tube) under strict control of ischemia time reveals pathways that significantly differentiate between HGSC and relevant normal tissues in the context of homologous repair deficiency (HRD) status. In addition to confirming key features of HGSC from previous studies, including a potential survival-associated signature and histone acetylation as a marker of HRD, deep phosphoproteomics provides insights regarding the potential role of proliferation-induced replication stress in promoting the characteristic chromosomal instability of HGSC and suggests potential therapeutic targets for use in precision medicine trials.


Asunto(s)
Inestabilidad Cromosómica/fisiología , Cistadenocarcinoma Seroso , Replicación del ADN/genética , Neoplasias Ováricas , Fosfotransferasas/genética , Adulto , Anciano , Anciano de 80 o más Años , Puntos de Control del Ciclo Celular/genética , Estudios de Cohortes , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/mortalidad , Daño del ADN , Neoplasias de las Trompas Uterinas/genética , Neoplasias de las Trompas Uterinas/metabolismo , Neoplasias de las Trompas Uterinas/mortalidad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , Mitosis/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/mortalidad , Fosfotransferasas/metabolismo , Proteogenómica , Transcriptoma , Proteína p53 Supresora de Tumor/genética
9.
Anal Chem ; 92(6): 4217-4225, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32058701

RESUMEN

Methodologies that facilitate high-throughput proteomic analysis are a key step toward moving proteome investigations into clinical translation. Data independent acquisition (DIA) has potential as a high-throughput analytical method due to the reduced time needed for sample analysis, as well as its highly quantitative accuracy. However, a limiting feature of DIA methods is the sensitivity of detection of low abundant proteins and depth of coverage, which other mass spectrometry approaches address by two-dimensional fractionation (2D) to reduce sample complexity during data acquisition. In this study, we developed a 2D-DIA method intended for rapid- and deeper-proteome analysis compared to conventional 1D-DIA analysis. First, we characterized 96 individual fractions obtained from the protein standard, NCI-7, using a data-dependent approach (DDA), identifying a total of 151,366 unique peptides from 11,273 protein groups. We observed that the majority of the proteins can be identified from just a few selected fractions. By performing an optimization analysis, we identified six fractions with high peptide number and uniqueness that can account for 80% of the proteins identified in the entire experiment. These selected fractions were combined into a single sample which was then subjected to DIA (referred to as 2D-DIA) quantitative analysis. Furthermore, improved DIA quantification was achieved using a hybrid spectral library, obtained by combining peptides identified from DDA data with peptides identified directly from the DIA runs with the help of DIA-Umpire. The optimized 2D-DIA method allowed for improved identification and quantification of low abundant proteins compared to conventional unfractionated DIA analysis (1D-DIA). We then applied the 2D-DIA method to profile the proteomes of two breast cancer patient-derived xenograft (PDX) models, quantifying 6,217 and 6,167 unique proteins in basal- and luminal- tumors, respectively. Overall, this study demonstrates the potential of high-throughput quantitative proteomics using a novel 2D-DIA method.


Asunto(s)
Péptidos/análisis , Proteínas/análisis , Proteómica , Humanos , Espectrometría de Masas
10.
Sci Data ; 6(1): 160, 2019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-31467290

RESUMEN

RAS genes are frequently mutated in cancer and have for decades eluded effective therapeutic attack. The National Cancer Institute's RAS Initiative has a focus on understanding pathways and discovering therapies for RAS-driven cancers. Part of these efforts is the generation of novel reagents to enable the quantification of RAS network proteins. Here we present a dataset describing the development, validation (following consensus principles developed by the broader research community), and distribution of 104 monoclonal antibodies (mAbs) enabling detection of 27 phosphopeptides and 69 unmodified peptides from 20 proteins in the RAS network. The dataset characterizes the utility of the antibodies in a variety of applications, including Western blotting, immunoprecipitation, protein array, immunohistochemistry, and targeted mass spectrometry. All antibodies and characterization data are publicly available through the CPTAC Antibody Portal, Panorama Public Repository, and/or PRIDE databases. These reagents will aid researchers in discerning pathways and measuring expression changes in the RAS signaling network.


Asunto(s)
Anticuerpos Monoclonales/química , Genes ras , Transducción de Señal , Línea Celular , Dermatoglifia del ADN , Humanos , Indicadores y Reactivos/química , Repeticiones de Microsatélite , Neoplasias/genética
11.
Clin Proteomics ; 15: 26, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30087585

RESUMEN

BACKGROUND: Mass spectrometry-based proteomics has become a powerful tool for the identification and quantification of proteins from a wide variety of biological specimens. To date, the majority of studies utilizing tissue samples have been carried out on prospectively collected fresh frozen or optimal cutting temperature (OCT) embedded specimens. However, such specimens are often difficult to obtain, in limited in supply, and clinical information and outcomes on patients are inherently delayed as compared to banked samples. Annotated formalin fixed, paraffin embedded (FFPE) tumor tissue specimens are available for research use from a variety of tissue banks, such as from the surveillance, epidemiology and end results (SEER) registries' residual tissue repositories. Given the wealth of outcomes information associated with such samples, the reuse of archived FFPE blocks for deep proteomic characterization with mass spectrometry technologies would provide a valuable resource for population-based cancer studies. Further, due to the widespread availability of FFPE specimens, validation of specimen integrity opens the possibility for thousands of studies that can be conducted worldwide. METHODS: To examine the suitability of the SEER repository tissues for proteomic and phosphoproteomic analysis, we analyzed 60 SEER patient samples, with time in storage ranging from 7 to 32 years; 60 samples with expression proteomics and 18 with phosphoproteomics, using isobaric labeling. Linear modeling and gene set enrichment analysis was used to evaluate the impacts of collection site and storage time. RESULTS: All samples, regardless of age, yielded suitable protein mass after extraction for expression analysis and 18 samples yielded sufficient mass for phosphopeptide analysis. Although peptide, protein, and phosphopeptide identifications were reduced by 50, 20 and 76% respectively, from comparable OCT specimens, we found no statistically significant differences in protein quantitation correlating with collection site or specimen age. GSEA analysis of GO-term level measurements of protein abundance differences between FFPE and OCT embedded specimens suggest that the formalin fixation process may alter representation of protein categories in the resulting dataset. CONCLUSIONS: These studies demonstrate that residual FFPE tissue specimens, of varying age and collection site, are a promising source of protein for proteomic investigations if paired with rigorously verified mass spectrometry workflows.

12.
Proc Natl Acad Sci U S A ; 115(16): 4140-4145, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29610327

RESUMEN

Mutations of the KRAS gene are found in human cancers with high frequency and result in the constitutive activation of its protein products. This leads to aberrant regulation of downstream pathways, promoting cell survival, proliferation, and tumorigenesis that drive cancer progression and negatively affect treatment outcomes. Here, we describe a workflow that can detect and quantify mutation-specific consequences of KRAS biochemistry, namely linked changes in posttranslational modifications (PTMs). We combined immunoaffinity enrichment with detection by top-down mass spectrometry to discover and quantify proteoforms with or without the Gly13Asp mutation (G13D) specifically in the KRAS4b isoform. The workflow was applied first to isogenic KRAS colorectal cancer (CRC) cell lines and then to patient CRC tumors with matching KRAS genotypes. In two cellular models, a direct link between the knockout of the mutant G13D allele and the complete nitrosylation of cysteine 118 of the remaining WT KRAS4b was observed. Analysis of tumor samples quantified the percentage of mutant KRAS4b actually present in cancer tissue and identified major differences in the levels of C-terminal carboxymethylation, a modification critical for membrane association. These data from CRC cells and human tumors suggest mechanisms of posttranslational regulation that are highly context-dependent and which lead to preferential production of specific KRAS4b proteoforms.


Asunto(s)
Neoplasias Colorrectales/enzimología , Mutación Missense , Proteínas de Neoplasias/análisis , Mutación Puntual , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas p21(ras)/análisis , Secuencia de Aminoácidos , Línea Celular Tumoral , Membrana Celular/metabolismo , Cromatografía Liquida , Neoplasias Colorrectales/genética , Cisteína/química , Humanos , Metilación , Modelos Moleculares , Proteínas de Neoplasias/química , Proteínas de Neoplasias/aislamiento & purificación , Nitrosación , Prenilación , Conformación Proteica , Proteómica/métodos , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/aislamiento & purificación , Proteínas Recombinantes/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Espectrometría de Masas en Tándem
13.
Nat Chem Biol ; 14(3): 206-214, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29443976

RESUMEN

Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA- and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry-based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, "How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?" We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype.


Asunto(s)
Genoma Humano , Procesamiento Proteico-Postraduccional , Proteínas/química , Proteoma/química , Proteómica/métodos , Bases de Datos de Proteínas , Humanos , Espectrometría de Masas , Fenotipo , Biosíntesis de Proteínas , Isoformas de Proteínas/química , Ubiquitina/química
14.
Mol Cell Proteomics ; 16(1): 121-134, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27836980

RESUMEN

Coexpression of mRNAs under multiple conditions is commonly used to infer cofunctionality of their gene products despite well-known limitations of this "guilt-by-association" (GBA) approach. Recent advancements in mass spectrometry-based proteomic technologies have enabled global expression profiling at the protein level; however, whether proteome profiling data can outperform transcriptome profiling data for coexpression based gene function prediction has not been systematically investigated. Here, we address this question by constructing and analyzing mRNA and protein coexpression networks for three cancer types with matched mRNA and protein profiling data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Our analyses revealed a marked difference in wiring between the mRNA and protein coexpression networks. Whereas protein coexpression was driven primarily by functional similarity between coexpressed genes, mRNA coexpression was driven by both cofunction and chromosomal colocalization of the genes. Functionally coherent mRNA modules were more likely to have their edges preserved in corresponding protein networks than functionally incoherent mRNA modules. Proteomic data strengthened the link between gene expression and function for at least 75% of Gene Ontology (GO) biological processes and 90% of KEGG pathways. A web application Gene2Net (http://cptac.gene2net.org) developed based on the three protein coexpression networks revealed novel gene-function relationships, such as linking ERBB2 (HER2) to lipid biosynthetic process in breast cancer, identifying PLG as a new gene involved in complement activation, and identifying AEBP1 as a new epithelial-mesenchymal transition (EMT) marker. Our results demonstrate that proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Proteomics should be integrated if not preferred in gene function and human disease studies.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Neoplasias/genética , Neoplasias/metabolismo , Proteómica/métodos , Algoritmos , Mapeo Cromosómico , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Espectrometría de Masas , Análisis de Secuencia por Matrices de Oligonucleótidos , Mapas de Interacción de Proteínas , Navegador Web
15.
Cell ; 166(3): 755-765, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27372738

RESUMEN

To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT.


Asunto(s)
Proteínas de Neoplasias/genética , Neoplasias Quísticas, Mucinosas y Serosas/genética , Neoplasias Ováricas/genética , Proteoma , Acetilación , Inestabilidad Cromosómica , Reparación del ADN , ADN de Neoplasias , Femenino , Dosificación de Gen , Humanos , Espectrometría de Masas , Fosfoproteínas/genética , Procesamiento Proteico-Postraduccional , Análisis de Supervivencia
16.
Mol Cell Proteomics ; 15(1): 45-56, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26503891

RESUMEN

Bottom-up proteomics relies on the use of proteases and is the method of choice for identifying thousands of protein groups in complex samples. Top-down proteomics has been shown to be robust for direct analysis of small proteins and offers a solution to the "peptide-to-protein" inference problem inherent with bottom-up approaches. Here, we describe the first large-scale integration of genomic, bottom-up and top-down proteomic data for the comparative analysis of patient-derived mouse xenograft models of basal and luminal B human breast cancer, WHIM2 and WHIM16, respectively. Using these well-characterized xenograft models established by the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium, we compared and contrasted the performance of bottom-up and top-down proteomics to detect cancer-specific aberrations at the peptide and proteoform levels and to measure differential expression of proteins and proteoforms. Bottom-up proteomic analysis of the tumor xenografts detected almost 10 times as many coding nucleotide polymorphisms and peptides resulting from novel splice junctions than top-down. For proteins in the range of 0-30 kDa, where quantitation was performed using both approaches, bottom-up proteomics quantified 3,519 protein groups from 49,185 peptides, while top-down proteomics quantified 982 proteoforms mapping to 358 proteins. Examples of both concordant and discordant quantitation were found in a ∼60:40 ratio, providing a unique opportunity for top-down to fill in missing information. The two techniques showed complementary performance, with bottom-up yielding eight times more identifications of 0-30 kDa proteins in xenograft proteomes, but failing to detect differences in certain posttranslational modifications (PTMs), such as phosphorylation pattern changes of alpha-endosulfine. This work illustrates the potency of a combined bottom-up and top-down proteomics approach to deepen our knowledge of cancer biology, especially when genomic data are available.


Asunto(s)
Neoplasias de la Mama/metabolismo , Xenoinjertos/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Animales , Neoplasias de la Mama/genética , Cromatografía Líquida de Alta Presión , Femenino , Genotipo , Humanos , Ratones , Peso Molecular , Péptidos/genética , Péptidos/metabolismo , Polimorfismo de Nucleótido Simple , Proteoma/química , Proteoma/genética , Espectrometría de Masas en Tándem , Trasplante Heterólogo
17.
J Proteome Res ; 15(3): 691-706, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26653538

RESUMEN

The NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC) employed a pair of reference xenograft proteomes for initial platform validation and ongoing quality control of its data collection for The Cancer Genome Atlas (TCGA) tumors. These two xenografts, representing basal and luminal-B human breast cancer, were fractionated and analyzed on six mass spectrometers in a total of 46 replicates divided between iTRAQ and label-free technologies, spanning a total of 1095 LC-MS/MS experiments. These data represent a unique opportunity to evaluate the stability of proteomic differentiation by mass spectrometry over many months of time for individual instruments or across instruments running dissimilar workflows. We evaluated iTRAQ reporter ions, label-free spectral counts, and label-free extracted ion chromatograms as strategies for data interpretation (source code is available from http://homepages.uc.edu/~wang2x7/Research.htm ). From these assessments, we found that differential genes from a single replicate were confirmed by other replicates on the same instrument from 61 to 93% of the time. When comparing across different instruments and quantitative technologies, using multiple replicates, differential genes were reproduced by other data sets from 67 to 99% of the time. Projecting gene differences to biological pathways and networks increased the degree of similarity. These overlaps send an encouraging message about the maturity of technologies for proteomic differentiation.


Asunto(s)
Xenoinjertos/química , Proteómica/métodos , Proteómica/normas , Neoplasias de la Mama/química , Neoplasias de la Mama/metabolismo , Cromatografía Liquida , Interpretación Estadística de Datos , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Redes y Vías Metabólicas , Variaciones Dependientes del Observador , Proteoma , Proteómica/instrumentación , Control de Calidad , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/normas
18.
J Proteome Res ; 13(12): 5310-8, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25405748

RESUMEN

The global human proteomics community in 2014 is fully engaged in projects that aim to create a better understanding of human biology and its complexities and to provide products from this new knowledge that will in some way benefit humanity. Human proteomics, like any other scientific enterprise, needs to identify areas of direction and development, both for the near future in completing current research projects and into the long-term for the engagement with even more complex challenges. In this Editorial we highlight and discuss four important areas that we collectively believe require attention and demand a collective response going forward. These four areas are: (1) Provide high-quality standardized, sensitive, specific, quantitative, and readily accessible protein, peptide, or other biomarkers of health, disease, response to therapy into the approval processes of regulatory agencies (e.g., U.S. Food and Drug Administration; FDA), and obtaining approval from the relevant agencies for their use in a clinical or other testing settings. (2) Implement standard processes for collecting, processing, and storing human clinical samples in biorepositories and enforcement of measures to ensure subject integrity including informed consent for the downstream use of samples and in registrations of subject identities within study databases. (3) Test and validate mass spectrometry technology platforms that hold much promise for creating opportunities for obtaining new important knowledge at levels of detection previously not achievable. (4) Organize clinical discovery operations and activities in an intuitive manner to meet the challenges of increased interests in the science we provide and diminishing levels of centrally financed resource and infrastructure support.


Asunto(s)
Espectrometría de Masas/métodos , Proteoma/análisis , Proteómica/métodos , Proteómica/normas , Biomarcadores/análisis , Biomarcadores/metabolismo , Investigación Biomédica/métodos , Investigación Biomédica/normas , Investigación Biomédica/tendencias , Humanos , Proteoma/metabolismo , Proteómica/tendencias , Estándares de Referencia , Reproducibilidad de los Resultados
19.
J Proteome Res ; 13(12): 5319-24, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25277501

RESUMEN

Clinical samples contained in biorepositories represent an important resource for investigating the many factors that drive human biology. The biological and chemical markers contained in clinical samples provide important measures of health and disease that when combined with such medical evaluation data can aid in decision making by physicians. Nearly all disciplines in medicine and every "omic" depend upon the readouts obtained from such samples, whether the measured analyte is a gene, a protein, a lipid, or a metabolite. There are many steps in sample processing, storage, and management that need to understood by the researchers who utilize biorepositories in their own work. These include not only the preservation of the desired analytes in the sample but also good understanding of the moral and legal framework required for subject protection irrespective of where the samples have been collected. Today there is a great deal of effort in the community to align and standardize both the methodology of sample collection and storage performed in different locations and the necessary frameworks of subject protection including informed consent and institutional review of the studies being performed. There is a growing trend in developing biorepositories around the focus of large population-based studies that address both active and silent nonsymptomatic disease. Logistically these studies generate large numbers of clinical samples and practically place increasing demand upon health care systems to provide uniform sample handling, processing, storage, and documentation of both the sample and the subject as well to ensure that safeguards exist to protect the rights of the study subjects for deciding upon the fates of their samples. Currently the authority to regulate the entire scope of biorepository usage exists as national practice in law in only a few countries. Such legal protection is a necessary component within the framework of biorepositories, both now and in the future. In this brief overview, we provide practical information to the potential users of biorepositories about some of the current developments in both the methodology of sample acquisition and in the regulatory environment governing their use.


Asunto(s)
Bancos de Muestras Biológicas/normas , Investigación Biomédica/normas , Manejo de Especímenes/métodos , Manejo de Especímenes/normas , Bancos de Muestras Biológicas/ética , Bancos de Muestras Biológicas/legislación & jurisprudencia , Investigación Biomédica/ética , Investigación Biomédica/legislación & jurisprudencia , Revisión Ética , Humanos , Consentimiento Informado , Legislación Médica , Estándares de Referencia , Manejo de Especímenes/ética , Donantes de Tejidos
20.
Proteomics ; 14(23-24): 2633-6, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25187343

RESUMEN

Advances in both targeted and unbiased MS-based proteomics are now at a mature stage for comprehensively and reproducibly characterizing a large part of the cancer proteome. These developments combined with the extensive genomic characterization of several cancer types by large-scale initiatives such as the International Cancer Genome Consortium and Cancer Genome Atlas Project have paved the way for proteogenomic analysis of omics datasets and integration methods. The advances serve as the basis for the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium and this article highlights its current work and future steps in the area of proteogenomics.


Asunto(s)
Genómica/métodos , Neoplasias/genética , Neoplasias/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA