Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38563410

RESUMEN

We conducted two experiments to evaluate the effects of a novel bacterial-based direct-fed microbial (DFM) on intestinal barrier integrity using the in vitro transepithelial electrical resistance (TEER) assay. In experiment 1, human-derived Caco-2 cells received or not (CON) a DFM containing Ligilactobacillus (formerly Lactobacillus) animalis 506, Propionibacterium freudenreichii 507, Bacillus paralicheniformis 809, and B. subtilis 597 (BDP; BOVAMINE DEFEND® Plus) at a rate of 1 × 108 CFU/transwell. Concurrently with treatment application (CON or BDP), a pathogenic challenge of Clostridium perfringens type A was added alone (PAT) or with BDP (PAT + BDP) at a rate of 2.8 × 107 CFU/transwell in a 2 × 2 factorial arrangement. In experiment 2, Caco-2 cells were also assigned in a 2 × 2 factorial design to CON or BDP and then, 2 h post-treatment administration (CON and BDP), a mixture of tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) was added alone (CYT) or with BDP (CYT + BDP) at a 10:1 ratio, respectively. In both experiments, TEER was measured for 18 h. In experiment 1, a DFM × pathogen × hour interaction was observed for TEER (P < 0.0001). Adding the PAT alone initially tended to increase TEER vs. CON from 1.1 to 2.2 h (P ≤ 0.09), increased TEER at 3.2 h (P < 0.01), but reduced TEER from 5.4 to the end of the experimental period at 18.4 h (P ≤ 0.01). On the other hand, adding DFM, with or without the pathogenic challenge, yielded greater TEER vs. CON-CON and CON-PAT for most of the experimental period (P ≤ 0.04). A similar interaction was detected and reported in experiment 2 (P < 0.0001). The CYT challenge reduced mean TEER compared with all other treatments from 3.2 h to the remainder of the study (P ≤ 0.03). On the other hand, BDP-CYT was able to maintain the integrity of the epithelial cells when compared with CON-CON throughout the experimental period (P ≤ 0.03), the exception being at 3.2 h (P = 0.20). Moreover, BDP-CON increased (P ≤ 0.04) TEER when compared with CON-CON from 3.2 to 18.4 h, but also in comparison with BDP-CYT from 4.3 to 18.4 h post-DFM and challenge administration into the cells. In summary, C. perfringens type A and a pro-inflammatory cytokine cocktail compromised the integrity of intestinal epithelial cell monolayers in vitro, whereas adding a multispecies bacteria-based DFM counteracted these damaging effects.


Two experiments were designed to evaluate the effects of adding a bacterial-based direct-fed microbial (DFM) containing Lactobacillus animalis 506, Propionibacterium freudenreichii 507, Bacillus paralicheniformis 809, and Bacillus subtilis 597 on the integrity of intestinal epithelial cells challenged with Clostridium perfringens type A or a pro-inflammatory cytokine cocktail. Regardless of the challenge, the addition of the DFM maintained the integrity of the intestinal epithelial cells in vitro. These results help to elucidate the potential beneficial effects that the bacterial-based DFM containing L. animalis 506, P. freudenreichii 507, B. paralicheniformis 809, and B. subtilis 597 may bring to livestock species.


Asunto(s)
Citocinas , Dieta , Humanos , Animales , Células CACO-2 , Lactobacillus , Clostridium perfringens , Alimentación Animal/análisis
2.
Transl Anim Sci ; 8: txae061, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38685987

RESUMEN

We designed and conducted two in vitro experiments to evaluate the effects of two Bacillus spp. probiotics on gut barrier integrity using the transepithelial electrical resistance (TEER) assay under two different challenge models. In Exp. 1, intestinal epithelial cells received or not (CON) B. paralicheniformis 809 (BLI) or B. subtilis 810 (BSU) at a rate of 1 × 108 colony forming units (CFU)/transwell. Two hours after treatment application (CON, BLI, or BSU), 5 mM of the reactive oxygen species hydrogen peroxide, mimicking mucosal oxidative stress, was added alone (HYP) or with each of the Bacillus spp. (HYP + BLI or HYP + BSU). In Exp. 2, cells were assigned to the same treatments as in Exp. 1 (CON, BLI, and BSU), or mycotoxin deoxynivalenol (DON), which was added alone or in combination with BLI or BSU, resulting in another two treatments (DON + BLI and DON + BSU). Transepithelial electrical resistance was measured for 14 h postchallenge. In Exp. 1, a treatment × hour interaction was observed for TEER (P < 0.0001). Adding BLI and BSU resulted in greater TEER values vs. CON for most of the experimental period (P < 0.02), whereas HYP reduced mean TEER and area under the curve (AUC), while increasing the amount of sugar that translocated through the monolayer cells (P < 0.001). A treatment × hour interaction was also observed in Exp. 2 (P < 0.0001), as DON led to an immediate and acute drop in TEER that lasted until the end of the experimental period (P < 0.0001). Both BLI and BSU alleviated the DON-induced damaging effects on the integrity of intestinal epithelial cells, whereas both Bacillus spp. alleviated the damage caused by DON alone and the proportion of sugar that translocated through the monolayer cells was not different between CON and DON + BLI (P = 0.14) and DON + BLI and DON + BSU (P = 0.62). In summary, both Bacillus spp. strains (B. paralicheniformis 809 and B. subtilis 810) were able to counteract the damaging effects of the challenge agents, hydrogen peroxide and deoxynivalenol, on gut barrier integrity.

3.
Vet Microbiol ; 291: 110032, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430715

RESUMEN

In recent years, it has become apparent that imbalances in the gastrointestinal system can impact organs beyond the intestine such as the lungs. Given the established ability of probiotics to modulate the immune system by interacting with gastrointestinal cells, our research aimed to investigate whether administering the probiotic strain Bacillus subtilis-597 could mitigate the outcome of influenza virus infection in pigs. Pigs were fed a diet either with or without the probiotic strain B. subtilis-597 for 14 days before being intranasally inoculated with a swine influenza A H1N2 strain (1 C.2 lineage). Throughout the study, we collected fecal samples, blood samples, and nasal swabs to examine viral shedding and immune gene expression. After seven days of infection, the pigs were euthanized, and lung and ileum tissues were collected for gene expression analysis and pathological examination. Our findings indicate that the administration of B. subtilis-597 exhibit potential in reducing lung lesions, possibly attributable to a general suppression of the immune system as indicated by reduced C-reactive protein (CRP) levels in serum, decreased expression of interferon-stimulated genes (ISGs), and localized reduction of the inflammatory marker serum amyloid A (SAA) in ileum tissue. Notably, the immune-modulatory effects of B. subtilis-597 appeared to be unrelated to the gastrointestinal microbiota, as the composition remained unaltered by both the influenza infection and the administration of B. subtilis-597.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Probióticos , Enfermedades de los Porcinos , Porcinos , Animales , Humanos , Bacillus subtilis , Probióticos/farmacología , Infecciones por Orthomyxoviridae/veterinaria , Inflamación/veterinaria , Pulmón/patología
4.
Front Immunol ; 15: 1359499, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510254

RESUMEN

Human milk oligosaccharides (HMOs) can modulate the intestinal barrier and regulate immune cells to favor the maturation of the infant intestinal tract and immune system, but the precise functions of individual HMOs are unclear. To determine the structure-dependent effects of individual HMOs (representing different structural classes) on the intestinal epithelium as well as innate and adaptive immune cells, we assessed fucosylated (2'FL and 3FL), sialylated (3'SL and 6'SL) and neutral non-fucosylated (LNT and LNT2) HMOs for their ability to support intestinal barrier integrity, to stimulate the secretion of chemokines from intestinal epithelial cells, and to modulate cytokine release from LPS-activated dendritic cells (DCs), M1 macrophages (MØs), and co-cultures with naïve CD4+ T cells. The fucosylated and neutral non-fucosylated HMOs increased barrier integrity and protected the barrier following an inflammatory insult but exerted minimal immunomodulatory activity. The sialylated HMOs enhanced the secretion of CXCL10, CCL20 and CXCL8 from intestinal epithelial cells, promoted the secretion of several cytokines (including IL-10, IL-12p70 and IL-23) from LPS-activated DCs and M1 MØs, and increased the secretion of IFN-γ and IL-17A from CD4+ T cells primed by LPS-activated DCs and MØs while reducing the secretion of IL-13. Thus, 3'SL and 6'SL supported Th1 and Th17 responses while reducing Th2 responses. Collectively, our data show that HMOs exert structure-dependent effects on the intestinal epithelium and possess immunomodulatory properties that confer benefits to infants and possibly also later in life.


Asunto(s)
Lipopolisacáridos , Leche Humana , Lactante , Humanos , Leche Humana/química , Lipopolisacáridos/farmacología , Células Th17 , Oligosacáridos/farmacología , Células Epiteliales , Citocinas/análisis
5.
Animals (Basel) ; 14(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38254438

RESUMEN

This study investigated the impact of L. animalis 506 on gut barrier integrity and regulation of inflammation in vitro using intestinal epithelial cell lines. Caco-2 or HT29 cell monolayers were challenged with enterotoxigenic E. coli (ETEC) or a ruminant isolate of Salmonella Heidelberg in the presence or absence of one of six probiotic Lactobacillus spp. strains. Among these, L. animalis 506 excelled at exerting protective effects by significantly mitigating the decreased transepithelial electrical resistance (TEER) as assessed using area under the curve (AUC) (p < 0.0001) and increased apical-to-basolateral fluorescein isothiocyanate (FITC) dextran translocation (p < 0.0001) across Caco-2 cell monolayers caused by S. Heidelberg or ETEC, respectively. Similarly, L. animalis 506 and other probiotic strains significantly attenuated the S. Heidelberg- and ETEC-induced increase in IL-8 from HT29 cells (p < 0.0001). Moreover, L. animalis 506 significantly counteracted the TEER decrease (p < 0.0001) and FITC dextran translocation (p < 0.0001) upon challenge with Clostridium perfringens. Finally, L. animalis 506 significantly attenuated DON-induced TEER decrease (p < 0.01) and FITC dextran translocation (p < 0.05) and mitigated occludin and zona occludens (ZO)-1 redistribution in Caco-2 cells caused by the mycotoxin. Collectively, these results demonstrate the ability of L. animalis 506 to confer protective effects on the intestinal epithelium in vitro upon challenge with enteric pathogens and DON known to be of particular concern in farm animals.

6.
Immunology ; 171(3): 402-412, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38030377

RESUMEN

Probiotics have been reported to have immunomodulatory properties in the context of infectious disease and inflammation, although the underlying mechanisms are not fully understood. Here, we aimed to determine how different probiotic bacterial strains modulated macrophage function during TLR3 stimulation mimicking viral infection. We screened 14 different strains for their ability to modulate TNF-α, IL-6 IL-10, IFN-α, IFN-ß and IFN-γ secretion in RAW 264.7 macrophages with or without poly(I:C) stimulation. Seven strains were selected for further analysis using primary porcine alveolar macrophages. In-depth transcriptomic analysis on alveolar macrophages was conducted for two strains. Most strains induced a synergistic effect when co-incubated with poly(I:C) resulting in increased levels of IL-6 and TNF-α secretion from RAW 264.7 cells. This synergistic effect was found to be TLR2 independent. Only strains of Bacillus spp. could induce this effect in alveolar macrophages. Transcriptomic analysis indicated that the increased TNF-α secretion in alveolar macrophages after co-incubation with poly(I:C) correlated with significant upregulation of TNF and IL23A-related pathways. Collectively, our data show that probiotic bacteria possess strain-dependent immunomodulatory properties that may be harnessed to enhance innate immune responses to pathogens.


Asunto(s)
Bacillus , Probióticos , Porcinos , Animales , Receptor Toll-Like 3/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Bacillus/metabolismo , Interleucina-6 , Macrófagos , Citocinas
7.
JDS Commun ; 4(4): 284-287, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37521053

RESUMEN

Optimization and support of health and performance of preweaning dairy calves is paramount to any dairy operation, and natural solutions, such as probiotics, may help to achieve such a goal. Two experiments were designed to evaluate the effects of direct-fed microbial (DFM) Enterococcus faecium 669 on performance of preweaning dairy calves. In experiment 1, twenty 4-d-old Holstein calves [initial body weight (BW) 41 ± 2.1 kg] were randomly assigned to either (1) no probiotic supplementation (CON; n = 10) or (2) supplementation with probiotic strain E. faecium 669 during the preweaning period (DFM; n = 10) at 2.0 × 1010 cfu/kg of whole milk. Full individual BW was analyzed every 20 d for average daily gain (ADG) and feed efficiency (FE) determination. In experiment 2, thirty 4-d-old Holstein calves (initial BW 40 ± 1.9 kg) were assigned to the same treatments as in experiment 1 (CON and DFM). The DFM supplementation period was divided into period I (from d 0 to 21) and II (from d 22 to 63), with weaning occurring when animals were 67 d of age. During the entire experimental period, DFM was mixed into the whole milk at a rate of 1.5 × 1010 and 2.5 × 109 cfu/kg of whole milk/calf per day for periods I and II, respectively (6-time reduction). Full individual BW was taken every 21 d. As a routine of the experiment, calves were monitored daily, and diarrhea cases were evaluated using a daily 3-point fecal score. For both experiments, all data were analyzed using calf as the experimental unit. In experiment 1, DFM-supplemented calves were heavier on d 40 (+ 4.5 kg) and 60 (+ 6.5 kg) and had a greater ADG (+ 118 g) versus CON. In experiment 2, supplementation with DFM significantly tended to reduce diarrhea occurrence. Treatment × day and treatment × week interactions were observed for BW, ADG, and gain-to-feed ratio. Dairy calves supplemented with DFM were 1.8 and 3.5 kg heavier on d 42 and at weaning, respectively, and had a greater ADG from d 21 to 42 (+ 52 g) and 42 to 63 (+ 77 g) and gain-to-feed ratio from d 42 to 63 (+ 8.6%). In summary, supplementation of E. faecium 669 to dairy calves improved preweaning performance, even when the dose of the DFM was reduced by 6- to 8-times. Additionally, initial promising results were observed on diarrhea occurrence, but further studies are warranted.

8.
Antibiotics (Basel) ; 9(12)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261022

RESUMEN

Probiotics have been shown to bind to host receptors, which are important for pathogen adhesion and induce the host's production of defence factors. They can activate the goblet-cell-derived production of mucins, a major component of the mucus layer and a physical barrier participating in limiting the proximity of microorganisms to the epithelial layer. In the last decade, Bacillus spp. strains have gained interest in human and animal health due to their tolerance and stability under gastrointestinal tract conditions. Moreover, Bacillus spp. strains can also produce various antimicrobial peptides that can support their use as commercial probiotic supplements and functional foods. The present study aimed to evaluate and determine the ability of selected Bacillus spp. strains to inhibit the growth of enterotoxigenic Escherichia coli (ETEC) F4 and to reduce binding of ETEC F4 to HT29-16E (mucus-secreting and goblet-like) human intestinal cells. Moreover, mucus production in the HT29 cells in the presence of the Bacillus spp. strains was quantified by ELISA. Bacillus spp. strains (CHCC 15076, CHCC 15516, CHCC 15541, and CHCC 16872) significantly inhibited the growth of ETEC F4. Moreover, the ability of the probiotic Bacillus spp. strains to stimulate mucin release was highly strain dependent. The treatment with Bacillus subtilis CHCC 15541 resulted in a significant increase of both MUC2 and MUC3 in HT29-16E cells. Therefore, this strain could be an up-and-coming candidate for developing commercial probiotic supplements to prevent infections caused by ETEC F4 and, potentially, other pathogens.

9.
mBio ; 11(3)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32430467

RESUMEN

Escherichia coli sequence type 131 (ST131) is a major cause of urinary and bloodstream infections. Its association with extended-spectrum ß-lactamases (ESBLs) significantly complicates treatment. Its best-described component is the rapidly expanding H30Rx clade, containing allele 30 of the type 1 fimbrial adhesin gene fimH This lineage appears to have emerged in the United States and spread around the world in part due to the acquisition of the ESBL-encoding blaCTX-M-15 gene and resistance to fluoroquinolones. However, non-H30 ST131 sublineages with other acquired CTX-M-type resistance genes are also emerging. Based on whole-genome analyses, we describe here the presence of an (fimH) H27 E. coli ST131 sublineage that has recently caused an outbreak of community-acquired bacteremia and recurrent urinary tract infections (UTIs) in Denmark. This sublineage has acquired both a virulence plasmid (pAA) that defines the enteroaggregative E. coli (EAEC) diarrheagenic pathotype and multiple genes associated with extraintestinal E. coli (ExPEC); combined, these traits have made this particular ST131 sublineage successful at colonizing its human host and causing recurrent UTI. Moreover, using a historic World Health Organization (WHO) E. coli collection and publicly available genome sequences, we identified a global H27 EAEC ST131 sublineage that dates back as far as 1998. Most H27 EAEC ST131 isolates harbor pAA or pAA-like plasmids, and our analysis strongly implies a single ancestral acquisition among these isolates. These findings illustrate both the profound plasticity of this important pathogenic E. coli ST131 H27 sublineage and genetic acquisitions of EAEC-specific virulence traits that likely confer an enhanced ability to cause intestinal colonization.IMPORTANCEE. coli ST131 is an important extraintestinal pathogenic lineage. A signature characteristic of ST131 is its ability to asymptomatically colonize the gastrointestinal tract and then opportunistically cause extraintestinal infections, such as cystitis, pyelonephritis, and urosepsis. In this study, we identified an ST131 H27 sublineage that has acquired the enteroaggregative diarrheagenic phenotype, spread across multiple continents, and caused multiple outbreaks of community-acquired ESBL-associated bloodstream infections in Denmark. The strain's ability to both cause diarrhea and innocuously colonize the human gastrointestinal tract may facilitate its dissemination and establishment in the community.


Asunto(s)
Bacteriemia/microbiología , Infecciones por Escherichia coli/microbiología , Escherichia coli/genética , Escherichia coli/patogenicidad , Infecciones Urinarias/microbiología , Antibacterianos/farmacología , Bancos de Muestras Biológicas , Infecciones Comunitarias Adquiridas/microbiología , Dinamarca , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/efectos de los fármacos , Genoma Bacteriano , Humanos , Tipificación de Secuencias Multilocus , Filogenia , Plásmidos/genética , Análisis de Secuencia de ADN , Virulencia/genética , Secuenciación Completa del Genoma , Organización Mundial de la Salud
10.
mBio ; 8(3)2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28588132

RESUMEN

Enteroaggregative Escherichia coli (EAEC) causes diarrhea and intestinal inflammation worldwide. EAEC strains are characterized by the presence of aggregative adherence fimbriae (AAF), which play a key role in pathogenesis by mediating attachment to the intestinal mucosa and by triggering host inflammatory responses. Here, we identify the epithelial transmembrane mucin MUC1 as an intestinal host cell receptor for EAEC, demonstrating that AAF-mediated interactions between EAEC and MUC1 facilitate enhanced bacterial adhesion. We further demonstrate that EAEC infection also causes elevated expression of MUC1 in inflamed human intestinal tissues. Moreover, we find that MUC1 facilitates AAF-dependent migration of neutrophils across the epithelium in response to EAEC infection. Thus, we show for the first time a proinflammatory role for MUC1 in the host response to an intestinal pathogen.IMPORTANCE EAEC is a clinically important intestinal pathogen that triggers intestinal inflammation and diarrheal illness via mechanisms that are not yet fully understood. Our findings provide new insight into how EAEC triggers host inflammation and underscores the pivotal role of AAFs-the principal adhesins of EAEC-in driving EAEC-associated disease. Most importantly, our findings add a new dimension to the signaling properties of the transmembrane mucin MUC1. Mostly studied for its role in various forms of cancer, MUC1 is widely regarded as playing an anti-inflammatory role in response to infection with bacterial pathogens in various tissues. However, the role of MUC1 during intestinal infections has not been previously explored, and our results describe the first report of MUC1 as a proinflammatory factor following intestinal infection.


Asunto(s)
Adhesión Bacteriana , Células Epiteliales/microbiología , Escherichia coli/fisiología , Fimbrias Bacterianas/inmunología , Mucina-1/metabolismo , Infiltración Neutrófila , Movimiento Celular , Diarrea/microbiología , Escherichia coli/inmunología , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Fimbrias Bacterianas/fisiología , Células HEK293 , Interacciones Huésped-Patógeno/inmunología , Humanos , Inflamación , Intestinos/inmunología , Intestinos/microbiología , Intestinos/fisiopatología , Mucina-1/genética , Neutrófilos/fisiología , Transducción de Señal/inmunología
11.
Gut Microbes ; 8(6): 544-560, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-28598765

RESUMEN

Shigella is unique among enteric pathogens, as it invades colonic epithelia through the basolateral pole. Therefore, it has evolved the ability to breach the intestinal epithelial barrier to deploy an arsenal of effector proteins, which permits bacterial invasion and leads to a severe inflammatory response. However, the mechanisms used by Shigella to regulate epithelial barrier permeability remain unknown. To address this question, we used both an intestinal polarized model and a human ex-vivo model to further characterize the early events of host-bacteria interactions. Our results showed that secreted Serine Protease A (SepA), which belongs to the serine protease autotransporter of Enterobacteriaceae family, is responsible for critically disrupting the intestinal epithelial barrier. Such disruption facilitates bacterial transit to the basolateral pole of the epithelium, ultimately fostering the hallmarks of the disease pathology. SepA was found to cause a decrease in active LIM Kinase 1 (LIMK1) levels, a negative inhibitor of actin-remodeling proteins, namely cofilin. Correspondingly, we observed increased activation of cofilin, a major actin-polymerization factor known to control opening of tight junctions at the epithelial barrier. Furthermore, we resolved the crystal structure of SepA to elucidate its role on actin-dynamics and barrier disruption. The serine protease activity of SepA was found to be required for the regulatory effects on LIMK1 and cofilin, resulting in the disruption of the epithelial barrier during infection. Altogether, we demonstrate that SepA is indispensable for barrier disruption, ultimately facilitating Shigella transit to the basolateral pole where it effectively invades the epithelium.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Mucosa Intestinal/microbiología , Shigella flexneri/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Línea Celular Tumoral , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/ultraestructura , Modelos Biológicos , Mutación , Infiltración Neutrófila/inmunología , Permeabilidad , Fosforilación , Estructura Secundaria de Proteína , Shigella flexneri/genética , Shigella flexneri/inmunología , Relación Estructura-Actividad , Uniones Estrechas/inmunología , Uniones Estrechas/metabolismo , Uniones Estrechas/microbiología
12.
Front Microbiol ; 8: 579, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28439262

RESUMEN

Heat treatment is a widely used process to reduce bacterial loads in the food industry or to decontaminate surfaces, e.g., in hospital settings. However, there are situations where lower temperatures must be employed, for instance in case of food production such as raw milk cheese or for decontamination of medical devices such as thermo-labile flexible endoscopes. A recently identified locus of heat resistance (LHR) has been shown to be present in and confer heat resistance to a variety of Enterobacteriaceae, including Escherichia coli isolates from food production settings and clinical ESBL-producing E. coli isolates. Here, we describe the presence of two distinct LHR variants within a particularly heat resistant E. coli raw milk cheese isolate. We demonstrate for the first time in this species the presence of one of these LHRs on a plasmid, designated pFAM21805, also encoding type 3 fimbriae and three bacteriocins and corresponding self-immunity proteins. The plasmid was highly transferable to other E. coli strains, including Shiga-toxin-producing strains, and conferred LHR-dependent heat resistance as well as type 3 fimbriae-dependent biofilm formation capabilities. Selection for and acquisition of this "survival" plasmid by pathogenic organisms, e.g., in food production environments, may pose great concern and emphasizes the need to screen for the presence of LHR genes in isolates.

13.
Front Microbiol ; 8: 263, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28275371

RESUMEN

Enteroaggregative Escherichia coli (EAEC) is an increasingly recognized pathogen associated with acute and persistent diarrhea worldwide. While EAEC strains are considered highly heterogeneous, aggregative adherence fimbriae (AAFs) are thought to play a pivotal role in pathogenicity by facilitating adherence to the intestinal mucosa. In this study, we optimized an existing multiplex PCR to target all known AAF variants, which are distinguished by differences in their pilin subunits. We applied the assay on a collection of 162 clinical Danish EAEC strains and interestingly found six, by SNP analysis phylogenetically distinct, strains harboring the major pilin subunits from both AAF/III and AAF/V. Whole-genome and plasmid sequencing revealed that in these six strains the agg3A and agg5A genes were located on a novel pAA plasmid variant. Moreover, the plasmid also encoded several other virulence genes including some not previously found on pAA plasmids. Thus, this plasmid endows the host strains with a remarkably high number of EAEC associated virulence genes hereby likely promoting strain pathogenicity.

14.
Res Microbiol ; 167(5): 345-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26946311

RESUMEN

Nosocomial infections caused by extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli are a major concern worldwide. There is an urgent need to identify bacterial factors promoting survival and persistence of these organisms in the nosocomial environment. Here, we describe the presence of a gene cluster, containing the Clp ATPase ClpK, within a collection of Danish ESBL-producing E. coli isolates. The cluster conferred thermoprotection upon the isolates, and thus might facilitate survival on medical devices exposed to semi-high temperatures in a hospital setting.


Asunto(s)
Infección Hospitalaria/microbiología , Microbiología Ambiental , Escherichia coli/fisiología , Escherichia coli/efectos de la radiación , Viabilidad Microbiana/efectos de la radiación , beta-Lactamasas/metabolismo , Dinamarca , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Hospitales , Calor , Familia de Multigenes
15.
Cell Microbiol ; 17(6): 843-59, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25486861

RESUMEN

Salmonella enterica Typhimurium induces intestinal inflammation through the activity of type III secreted effector (T3SE) proteins. Our prior results indicate that the secretion of the T3SE SipA and the ability of SipA to induce epithelial cell responses that lead to induction of polymorphonuclear transepithelial migration are not coupled to its direct delivery into epithelial cells from Salmonella. We therefore tested the hypothesis that SipA interacts with a membrane protein located at the apical surface of intestinal epithelial cells. Employing a split ubiquitin yeast-two-hybrid screen, we identified the tetraspanning membrane protein, p53 effector related to PMP-22 (PERP), as a SipA binding partner. SipA and PERP appear to have intersecting activities as we found PERP to be involved in proinflammatory pathways shown to be regulated by SipA. In sum, our studies reveal a critical role for PERP in the pathogenesis of S. Typhimurium, and for the first time demonstrate that SipA, a T3SE protein, can engage a host protein at the epithelial surface.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Inflamación/microbiología , Inflamación/patología , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Salmonella typhimurium/inmunología , Línea Celular , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Genes Supresores de Tumor , Humanos , Unión Proteica , Mapeo de Interacción de Proteínas , Migración Transendotelial y Transepitelial , Técnicas del Sistema de Dos Híbridos
16.
Cell Microbiol ; 16(9): 1339-53, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24617613

RESUMEN

Neutrophil (polymorphonuclear leucocytes; PMN) transmigration across mucosal surfaces contributes to dysfunction of epithelial barrier properties, a characteristic underlying many mucosal inflammatory diseases. Using Salmonella enterica serovar Typhimurium (S. Typhimurium) as a prototypic proinflammatory insult, we have previously reported that the eicosanoid hepoxilin A3 (HXA3 ), an endogenous product of 12-lipoxygenase (12-LOX) activity, is secreted from the apical surface of the intestinal epithelium to establish a chemotactic gradient that guides PMN across the epithelial surface. Since little is known regarding the molecular mechanisms that regulate 12-LOX during S. Typhimurium infection, we investigated this pathway. We found that expression of phospholipid glutathione peroxidase (GPX4), which is known to have an inhibitory effect on 12-LOX activity, is significantly decreased at both the mRNA and protein level during infection with S. Typhimurium. Moreover, employing intestinal epithelial cell monolayers expressing siRNA against GPX4 mRNA, S. Typhimurium-induced PMN migration was significantly increased compared with the non-specific siRNA control cells. Conversely, in cells engineered to overexpress GPX4, S. Typhimurium-induced PMN migration was significantly decreased, which is consistent with the finding that partial depletion of GPX4 by RNAi resulted in a significant increase in HXA3 secretion during S. Typhimurium infection. Mechanistically, although we found Salmonella entry not to be required for the induced decrease in GPX4, the secreted effector, SipA, which is known to induce epithelial responses leading to stimulation of HXA3 , governed the decrease in GPX4 in a process that does not lead to an overall increase in the levels of ROS. Taken together, these results suggest that S. Typhimurium induces apical secretion of HXA3 by decreasing the expression of phospholipid GPX, which in turn leads to an increase in 12-LOX activity, and hence HXA3 synthesis.


Asunto(s)
Glutatión Peroxidasa/metabolismo , Mucosa Intestinal/enzimología , Neutrófilos/citología , Neutrófilos/metabolismo , Salmonella typhimurium/fisiología , Western Blotting , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Humanos , Mucosa Intestinal/citología , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Especies Reactivas de Oxígeno/metabolismo , Migración Transendotelial y Transepitelial/genética , Migración Transendotelial y Transepitelial/fisiología
17.
Infect Dis Clin North Am ; 27(3): 631-49, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24011834

RESUMEN

Pathogenic Escherichia coli are genetically diverse and encompass a broad variety of pathotypes, such as enteroaggregative E. coli (EAEC) or enterohemorrhagic E. coli (EHEC), which cause distinct clinical syndromes. The historically large 2011 German outbreak of hemolytic uremic syndrome (HUS), caused by a Shiga-toxin producing E. coli (STEC) of the serotype O104:H4, illustrated the emerging importance of non-O157 STEC. STEC O104:H4, with features characteristic of both enteroaggregative E. coli and enterohemorrhagic E. coli, represents a unique and highly virulent pathotype. The German outbreak both allowed for the evaluation of several potential therapeutic approaches to STEC-induced HUS and emphasizes the importance of early and specific detection of both O157 and non-O157 STEC.


Asunto(s)
Enfermedades Transmisibles Emergentes/microbiología , Infecciones por Escherichia coli/microbiología , Escherichia coli Shiga-Toxigénica/patogenicidad , Brotes de Enfermedades , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/genética , Europa (Continente)/epidemiología , Genoma Bacteriano , Humanos , Escherichia coli Shiga-Toxigénica/genética , Virulencia/genética
18.
Infect Immun ; 81(4): 1164-71, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23357383

RESUMEN

A multiresistant clonal Escherichia coli O78:H10 strain qualifying molecularly as enteroaggregative Escherichia coli (EAEC) was recently shown to be the cause of a community-acquired outbreak of urinary tract infection (UTI) in greater Copenhagen, Denmark, in 1991. This marks the first time EAEC has been associated with an extraintestinal disease outbreak. Importantly, the outbreak isolates were recovered from the urine of patients with symptomatic UTI, strongly implying urovirulence. Here, we sought to determine the uropathogenic properties of the Copenhagen outbreak strain and whether these properties are conferred by the EAEC-specific virulence factors. We demonstrated that through expression of aggregative adherence fimbriae, the principal adhesins of EAEC, the outbreak strain exhibited pronouncedly increased adherence to human bladder epithelial cells compared to prototype uropathogenic strains. Moreover, the strain was able to produce distinct biofilms on abiotic surfaces, including urethral catheters. These findings suggest that EAEC-specific virulence factors increase uropathogenicity and may have played a significant role in the ability of the strain to cause a community-acquired outbreak of UTI. Thus, inclusion of EAEC-specific virulence factors is warranted in future detection and characterization of uropathogenic E. coli.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Escherichia coli/patogenicidad , Infecciones Urinarias/microbiología , Factores de Virulencia/metabolismo , Animales , Adhesión Bacteriana , Biopelículas/crecimiento & desarrollo , Dinamarca/epidemiología , Células Epiteliales/microbiología , Escherichia coli/aislamiento & purificación , Escherichia coli/fisiología , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/patología , Proteínas de Escherichia coli/metabolismo , Fimbrias Bacterianas/metabolismo , Humanos , Ratones , Infecciones Urinarias/epidemiología , Infecciones Urinarias/patología
19.
Cell Adh Migr ; 6(5): 413-8, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23076052

RESUMEN

Enteroaggregative Escherichia coli (EAEC) is an important cause of endemic and epidemic diarrheal disease worldwide. Although not classically considered an inflammatory pathogen in the style of Shigella and Salmonella species, clinical data from patients suggests that inflammatory responses may play an important role during EAEC disease. However, the specific role of inflammation during EAEC pathogenesis has not been investigated in detail. To better understand how EAEC may induce inflammation, we have focused our attention on the intimate interactions between EAEC and the host epithelium and the subsequent induction of host cell signaling events leading to innate immune responses. Here, we discuss our recent findings on the signaling pathway by which EAEC promotes transepithelial migration of polymorphonuclear leukocytes (PMNs), the role of aggregative adherence fimbriae in triggering this event and the implementation of human intestinal xenografts in immunodeficient mice for studying EAEC pathogenesis in vivo. Our findings suggest that EAEC shares conserved mechanisms of inducing PMN recruitment with other intestinal pathogens, providing new insight into the potential pathological consequences of EAEC-induced inflammation.


Asunto(s)
Infecciones por Escherichia coli/inmunología , Escherichia coli/patogenicidad , Interacciones Huésped-Patógeno , Inflamación/microbiología , Adhesinas de Escherichia coli/inmunología , Adhesinas de Escherichia coli/metabolismo , Araquidonato 12-Lipooxigenasa/metabolismo , Ácido Araquidónico/metabolismo , Adhesión Bacteriana , Membrana Celular/metabolismo , Movimiento Celular , Escherichia coli/inmunología , Escherichia coli/metabolismo , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Fimbrias Bacterianas/inmunología , Humanos , Inmunidad Innata , Inflamación/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Proteína Quinasa C-delta/inmunología , Proteína Quinasa C-delta/metabolismo , Transducción de Señal , Migración Transendotelial y Transepitelial
20.
BMC Microbiol ; 12: 201, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22967317

RESUMEN

BACKGROUND: Klebsiella pneumoniae is an important opportunistic pathogen causing pneumonia, sepsis and urinary tract infections. Colonisation of the gastrointestinal (GI) tract is a key step in the development of infections; yet the specific factors important for K. pneumoniae to colonize and reside in the GI tract of the host are largely unknown. To identify K. pneumoniae genes promoting GI colonisation, a novel genomic-library-based approach was employed. RESULTS: Screening of a K. pneumoniae C3091 genomic library, expressed in E. coli strain EPI100, in a mouse model of GI colonisation led to the positive selection of five clones containing genes promoting persistent colonisation of the mouse GI tract. These included genes encoding the global response regulator ArcA; GalET of the galactose operon; and a cluster of two putative membrane-associated proteins of unknown function. Both ArcA and GalET are known to be involved in metabolic pathways in Klebsiella but may have additional biological actions beneficial to the pathogen. In support of this, GalET was found to confer decreased bile salt sensitivity to EPI100. CONCLUSIONS: The present work establishes the use of genomic-library-based in vivo screening assays as a valuable tool for identification and characterization of virulence factors in K. pneumoniae and other bacterial pathogens.


Asunto(s)
Tracto Gastrointestinal/microbiología , Genética Microbiana/métodos , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/patogenicidad , Biología Molecular/métodos , Selección Genética , Factores de Virulencia/metabolismo , Animales , Portador Sano/microbiología , Modelos Animales de Enfermedad , Escherichia coli/genética , Femenino , Biblioteca de Genes , Pruebas Genéticas/métodos , Humanos , Klebsiella pneumoniae/genética , Ratones , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA