Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nat Commun ; 15(1): 8925, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39414793

RESUMEN

The antimicrobial resistance crisis along with challenges of antimicrobial discovery revealed the vital necessity to develop new antibiotics. Many of the animal proline-rich antimicrobial peptides (PrAMPs) inhibit the process of bacterial translation. Genome projects allowed to identify immune-related genes encoding animal host defense peptides. Here, using genome mining approach, we discovered a family of proline-rich cathelicidins, named rumicidins. The genes encoding these peptides are widespread among ruminant mammals. Biochemical studies indicated that rumicidins effectively inhibited the elongation stage of bacterial translation. The cryo-EM structure of the Escherichia coli 70S ribosome in complex with one of the representatives of the family revealed that the binding site of rumicidins span the ribosomal A-site cleft and the nascent peptide exit tunnel interacting with its constriction point by the conservative Trp23-Phe24 dyad. Bacterial resistance to rumicidins is mediated by knockout of the SbmA transporter or modification of the MacAB-TolC efflux pump. A wide spectrum of antibacterial activity, a high efficacy in the animal infection model, and lack of adverse effects towards human cells in vitro make rumicidins promising molecular scaffolds for development of ribosome-targeting antibiotics.


Asunto(s)
Antibacterianos , Escherichia coli , Ribosomas , Animales , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Ribosomas/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Ratones , Microscopía por Crioelectrón , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Catelicidinas , Sitios de Unión , Farmacorresistencia Bacteriana/genética , Péptidos Antimicrobianos/metabolismo , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/genética , Pruebas de Sensibilidad Microbiana
2.
Biomolecules ; 14(3)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38540752

RESUMEN

Capitellacin is the ß-hairpin membrane-active cationic antimicrobial peptide from the marine polychaeta Capitella teleta. Capitellacin exhibits antibacterial activity, including against drug-resistant strains. To gain insight into the mechanism of capitellacin action, we investigated the structure of the peptide in the membrane-mimicking environment of dodecylphosphocholine (DPC) micelles using high-resolution NMR spectroscopy. In DPC solution, two structural forms of capitellacin were observed: a monomeric ß-hairpin was in equilibrium with a dimer formed by the antiparallel association of the N-terminal ß-strands and stabilized by intermonomer hydrogen bonds and Van der Waals interactions. The thermodynamics of the enthalpy-driven dimerization process was studied by varying the temperature and molar ratios of the peptide to detergent. Cooling the peptide/detergent system promoted capitellacin dimerization. Paramagnetic relaxation enhancement induced by lipid-soluble 12-doxylstearate showed that monomeric and dimeric capitellacin interacted with the surface of the micelle and did not penetrate into the micelle interior, which is consistent with the "carpet" mode of membrane activity. An analysis of the known structures of ß-hairpin AMP dimers showed that their dimerization in a membrane-like environment occurs through the association of polar or weakly hydrophobic surfaces. A comparative analysis of the physicochemical properties of ß-hairpin AMPs revealed that dimer stability and hemolytic activity are positively correlated with surface hydrophobicity. An additional positive correlation was observed between hemolytic activity and AMP charge. The data obtained allowed for the provision of a more accurate description of the mechanism of the oligomerization of ß-structural peptides in biological membranes.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Poliquetos , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Dimerización , Micelas , Detergentes , Espectroscopía de Resonancia Magnética , Termodinámica
3.
Mar Drugs ; 21(12)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38132960

RESUMEN

Marine polychaetes represent an extremely rich and underexplored source of novel families of antimicrobial peptides (AMPs). The rapid development of next generation sequencing technologies and modern bioinformatics approaches allows us to apply them for characterization of AMP-derived genes and the identification of encoded immune-related peptides with the aid of genome and transcriptome mining. Here, we describe a universal bioinformatic approach based on the conserved BRICHOS domain as a search query for the identification of novel structurally unique AMP families in annelids. In this paper, we report the discovery of 13 novel BRICHOS-related peptides, ranging from 18 to 91 amino acid residues in length, in the cosmopolitan marine worm Heteromastus filiformis with the assistance of transcriptome mining. Two characteristic peptides with a low homology in relation to known AMPs-the α-helical amphiphilic linear peptide, consisting of 28 amino acid residues and designated as HfBRI-28, and the 25-mer ß-hairpin peptide, specified as HfBRI-25 and having a unique structure stabilized by two disulfide bonds-were obtained and analyzed as potential antimicrobials. Interestingly, both peptides showed the ability to kill bacteria via membrane damage, but mechanisms of their action and spectra of their activity differed significantly. Being non-cytotoxic towards mammalian cells and stable to proteolysis in the blood serum, HfBRI-25 was selected for further in vivo studies in a lethal murine model of the Escherichia coli infection, where the peptide contributed to the 100% survival rate in animals. A high activity against uropathogenic strains of E. coli (UPEC) as well as a strong ability to kill bacteria within biofilms allow us to consider the novel peptide HfBRI-25 as a promising candidate for the clinical therapy of urinary tract infections (UTI) associated with UPEC.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Péptidos Antimicrobianos , Animales , Ratones , Péptidos Catiónicos Antimicrobianos/química , Escherichia coli/genética , Transcriptoma , Aminoácidos/genética , Antibacterianos/farmacología , Mamíferos/metabolismo
4.
Pharmaceutics ; 15(8)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37631261

RESUMEN

Protegrin-1 (PG-1) is a cationic ß-hairpin pore-forming antimicrobial peptide having a membranolytic mechanism of action. It possesses in vitro a potent antimicrobial activity against a panel of clinically relevant MDR ESKAPE pathogens. However, its extremely high hemolytic activity and cytotoxicity toward mammalian cells prevent the further development of the protegrin-based antibiotic for systemic administration. In this study, we rationally modulated the PG-1 charge and hydrophobicity by substituting selected residues in the central ß-sheet region of PG-1 to design its analogs, which retain a high antimicrobial activity but have a reduced toxicity toward mammalian cells. In this work, eight PG-1 analogs with single amino acid substitutions and five analogs with double substitutions were obtained. These analogs were produced as thioredoxin fusions in Escherichia coli. It was shown that a significant reduction in hemolytic activity without any loss of antimicrobial activity could be achieved by a single amino acid substitution, V16R in the C-terminal ß-strand, which is responsible for the PG-1 oligomerization. As the result, a selective analog with a ≥30-fold improved therapeutic index was obtained. FTIR spectroscopy analysis of analog, [V16R], revealed that the peptide is unable to form oligomeric structures in a membrane-mimicking environment, in contrast to wild-type PG-1. Analog [V16R] showed a reasonable efficacy in septicemia infection mice model as a systemic antibiotic and could be considered as a promising lead for further drug design.

5.
Membranes (Basel) ; 13(4)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37103865

RESUMEN

Proline-rich antimicrobial peptides (PrAMPs) having a potent antimicrobial activity and a modest toxicity toward mammalian cells attract much attention as new templates for the development of antibiotic drugs. However, a comprehensive understanding of mechanisms of bacterial resistance development to PrAMPs is necessary before their clinical application. In this study, development of the resistance to the proline-rich bovine cathelicidin Bac71-22 derivative was characterized in the multidrug-resistant Escherichia coli clinical isolate causing the urinary tract infection. Three Bac71-22-resistant strains with ≥16-fold increase in minimal inhibitory concentrations (MICs) were selected by serially passaging after four-week experimental evolution. It was shown that in salt-containing medium, the resistance was mediated by inactivation of the SbmA transporter. The absence of salt in the selection media affected both dynamics and main molecular targets under selective pressure: a point mutation leading to the amino acid substitution N159H in the WaaP kinase responsible for heptose I phosphorylation in the LPS structure was also found. This mutation led to a phenotype with a decreased susceptibility to both the Bac71-22 and polymyxin B. Screening of antimicrobial activities with the use of a wide panel of known AMPs, including the human cathelicidin LL-37 and conventional antibiotics, against selected strains indicated no significant cross-resistance effects.

6.
Mar Drugs ; 20(8)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36005520

RESUMEN

In recent years, new antibiotics targeting multidrug resistant Gram-negative bacteria have become urgently needed. Therefore, antimicrobial peptides are considered to be a novel perspective class of antibacterial agents. In this study, a panel of novel BRICHOS-related ß-hairpin antimicrobial peptides were identified in transcriptomes of marine polychaeta species. Two of them-abarenicin from Abarenicola pacifica and UuBRI-21 from Urechis unicinctus-possess strong antibacterial potential in vitro against a wide panel of Gram-negative bacteria including drug-resistant strains. Mechanism of action assays demonstrate that peptides disrupt bacterial and mammalian membrane integrity. Considering the stronger antibacterial potential and a low ability of abarenicin to be bound by components of serum, this peptide was selected for further modification. We conducted an alanine and arginine scanning of abarenicin by replacing individual amino acids and modulating hydrophobicity so as to improve its antibacterial potency and membrane selectivity. This design approach allowed us to obtain the Ap9 analog displaying a high efficacy in vivo in the mice septicemia and neutropenic mice peritonitis models. We demonstrated that abarenicin analogs did not significantly induce bacterial resistance after a four-week selection experiment and acted on different steps of the biofilm formation: (a) killing bacteria at their planktonic stage and preventing biofilm formation and (b) degrading pre-formed biofilm and killing embedded bacteria. The potent antibacterial and antibiofilm activity of the abarenicin analog Ap9 with its high efficacy in vivo against Gram-negative infection in mice models makes this peptide an attractive candidate for further preclinical investigation.


Asunto(s)
Poliquetos , Animales , Antibacterianos/química , Antibacterianos/farmacología , Bacterias , Biopelículas , Bacterias Gramnegativas , Mamíferos , Ratones , Pruebas de Sensibilidad Microbiana , Péptidos/farmacología
7.
Membranes (Basel) ; 12(5)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35629841

RESUMEN

Over recent years, a growing number of bacterial species have become resistant to clinically relevant antibiotics. Proline-rich antimicrobial peptides (PrAMPs) having a potent antimicrobial activity and a negligible toxicity toward mammalian cells attract attention as new templates for the development of antibiotic drugs. Here, we mined genomes of all living Camelidae species and found a novel family of Bac7-like proline-rich cathelicidins which inhibited bacterial protein synthesis. The N-terminal region of a novel peptide from the alpaca Vicugna pacos named VicBac is responsible for inhibition of bacterial protein synthesis with an IC50 value of 0.5 µM in the E. coli cell-free system whereas the C-terminal region allows the peptide to penetrate bacterial membranes effectively. We also found that the full-length VicBac did not induce bacterial resistance after a two-week selection experiment, unlike the N-terminal truncated analog, which depended on the SbmA transport system. Both pro- and anti-inflammatory action of VicBac and its N-terminal truncated variant on various human cell types was found by multiplex immunoassay. The presence of the C-terminal tail in the natural VicBac does not provide for specific immune-modulatory effects in vitro but enhances the observed impact compared with the truncated analog. The pronounced antibacterial activity of VicBac, along with its moderate adverse effects on mammalian cells, make this molecule a promising scaffold for the development of peptide antibiotics.

8.
Mar Drugs ; 20(3)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35323465

RESUMEN

Among the most potent and proteolytically resistant antimicrobial peptides (AMPs) of animal origin are molecules forming a ß-hairpin structure stabilized by disulfide bonds. In this study, we investigated the mechanism of action and therapeutic potential of the ß-hairpin AMP from the marine polychaeta Capitella teleta, named capitellacin. The peptide exhibits a low cytotoxicity toward mammalian cells and a pronounced activity against a wide range of bacterial pathogens including multi-resistant bacteria, but the mechanism of its antibacterial action is still obscure. In view of this, we obtained analogs of capitellacin and tachyplesin-inspired chimeric variants to identify amino acid residues important for biological activities. A low hydrophobicity of the ß-turn region in capitellacin determines its modest membranotropic activity and slow membrane permeabilization. Electrochemical measurements in planar lipid bilayers mimicking the E. coli membrane were consistent with the detergent-like mechanism of action rather than with binding to a specific molecular target in the cell. The peptide did not induce bacterial resistance after a 21-day selection experiment, which also pointed at a membranotropic mechanism of action. We also found that capitellacin can both prevent E. coli biofilm formation and destroy preformed mature biofilms. The marked antibacterial and antibiofilm activity of capitellacin along with its moderate adverse effects on mammalian cells make this peptide a promising scaffold for the development of drugs for the treatment of chronic E. coli infections, in particular those caused by the formation of biofilms.


Asunto(s)
Antibacterianos , Péptidos Antimicrobianos , Poliquetos/química , Animales , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/aislamiento & purificación , Péptidos Antimicrobianos/farmacología , Organismos Acuáticos/química , Biopelículas/efectos de los fármacos , Línea Celular , Permeabilidad de la Membrana Celular/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Fibroblastos/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Conformación Proteica
9.
Front Microbiol ; 12: 725526, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484167

RESUMEN

In this study, dodecapeptide cathelicidins were shown to be widespread antimicrobial peptides among the Cetruminantia clade. In particular, we investigated the dodecapeptide from the domestic goat Capra hircus, designated as ChDode and its unique ortholog from the sperm whale Physeter catodon (PcDode). ChDode contains two cysteine residues, while PcDode consists of two dodecapeptide building blocks and contains four cysteine residues. The recombinant analogs of the peptides were obtained by heterologous expression in Escherichia coli cells. The structures of the peptides were studied by circular dichroism (CD), FTIR, and NMR spectroscopy. It was demonstrated that PcDode adopts a ß-hairpin structure in water and resembles ß-hairpin antimicrobial peptides, while ChDode forms a ß-structural antiparallel covalent dimer, stabilized by two intermonomer disulfide bonds. Both peptides reveal a significant right-handed twist about 200 degrees per 8 residues. In DPC micelles ChDode forms flat ß-structural tetramers by antiparallel non-covalent association of the dimers. The tetramers incorporate into the micelles in transmembrane orientation. Incorporation into the micelles and dimerization significantly diminished the amplitude of backbone motions of ChDode at the picosecond-nanosecond timescale. When interacting with negatively charged membranes containing phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), the ChDode peptide adopted similar oligomeric structure and was capable to form ion-conducting pores without membrane lysis. Despite modest antibacterial activity of ChDode, a considerable synergistic effect of this peptide in combination with another goat cathelicidin - the α-helical peptide ChMAP-28 was observed. This effect is based on an increase in permeability of bacterial membranes. In turn, this mechanism can lead to an increase in the efficiency of the combined action of the synergistic pair ChMAP-28 with the Pro-rich peptide mini-ChBac7.5Nα targeting the bacterial ribosome.

10.
Mar Drugs ; 18(12)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291782

RESUMEN

Endogenous antimicrobial peptides (AMPs) are evolutionary ancient molecular factors of innate immunity that play a key role in host defense. Among the most active and stable under physiological conditions AMPs are the peptides of animal origin that adopt a ß-hairpin conformation stabilized by disulfide bridges. In this study, a novel BRICHOS-domain related AMP from the marine polychaeta Capitella teleta, named capitellacin, was produced as the recombinant analogue and investigated. The mature capitellacin exhibits high homology with the known ß-hairpin AMP family-tachyplesins and polyphemusins from the horseshoe crabs. The ß-hairpin structure of the recombinant capitellacin was proved by CD and NMR spectroscopy. In aqueous solution the peptide exists as monomeric right-handed twisted ß-hairpin and its structure does not reveal significant amphipathicity. Moreover, the peptide retains this conformation in membrane environment and incorporates into lipid bilayer. Capitellacin exhibits a strong antimicrobial activity in vitro against a wide panel of bacteria including extensively drug-resistant strains. In contrast to other known ß-hairpin AMPs, this peptide acts apparently via non-lytic mechanism at concentrations inhibiting bacterial growth. The molecular mechanism of the peptide antimicrobial action does not seem to be related to the inhibition of bacterial translation therefore other molecular targets may be assumed. The reduced cytotoxicity against human cells and high antibacterial cell selectivity as compared to tachyplesin-1 make it an attractive candidate compound for an anti-infective drug design.


Asunto(s)
Poliquetos/química , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacología , Animales , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Sistema Libre de Células , Diseño de Fármacos , Proteínas Fluorescentes Verdes , Hemólisis/efectos de los fármacos , Cangrejos Herradura , Humanos , Membrana Dobles de Lípidos , Micelas , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología
11.
Front Microbiol ; 9: 2983, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30555455

RESUMEN

Being essential components of innate immune system, animal antimicrobial peptides (AMPs) also known as host-defense peptides came into sharp focus as possible alternatives to conventional antibiotics due to their high efficacy against a broad range of MDR pathogens and low rate of resistance development. Mammalian species can produce a set of co-localized AMPs with different structures and mechanisms of actions. Here we examined the combined antibacterial effects of cathelicidins, structurally diverse family of host-defense peptides found in vertebrate species. As a model we have used structurally distinct cathelicidins expressed in the leukocytes of goat Capra hircus. The recombinant analogs of natural peptides were obtained by heterologous expression in bacterial system and biological activities as well as the major mechanisms of antibacterial action of the peptides were investigated. As the result, the marked synergistic effect against wide panel of bacterial strains including extensively drug-resistant ones was observed for the pair of membranolytic α-helical amphipathic peptide ChMAP-28 and Pro-rich peptide mini-ChBac7.5Nα targeting a bacterial ribosome. ChMAP-28 was shown to damage the outer bacterial membrane at sub-inhibitory concentrations that could facilitate Pro-rich peptide translocation into the cell. Finally, resistance changes under a long-term continuous selective pressure of each individual peptide and the synergistic combination of both peptides were tested against Escherichia coli strains. The combination was shown to keep a high activity after the 26-days selection experiment in contrast to mini-ChBac7.5Nα used alone and the reference antibiotic polymyxin B. We identified the point mutation leading to amino acid substitution V102E in the membrane transport protein SbmA of the mini-ChBac7.5Nα-resistant strain obtained by selection. The experiments revealed that the presence of sub-inhibitory concentrations of ChMAP-28 restored the activity of mini-ChBac7.5Nα against this strain and clinical isolate with a weak sensitivity to mini-ChBac7.5Nα. The obtained results suggest a potential medical application of synergistic combinations of natural cathelicidins, which allows using a lower therapeutic dose and minimizes the risk of resistance development.

12.
Mar Drugs ; 16(12)2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30486233

RESUMEN

Biological activity of the new antimicrobial peptide polyphemusin III from the horseshoe crab Limulus polyphemus was examined against bacterial strains and human cancer, transformed, and normal cell cultures. Polyphemusin III has the amino acid sequence RRGCFRVCYRGFCFQRCR and is homologous to other ß-hairpin peptides from the horseshoe crab. Antimicrobial activity of the peptide was evaluated and MIC (minimal inhibitory concentration) values were determined. IC50 (half-maximal inhibitory concentration) values measured toward human cells revealed that polyphemusin III showed a potent cytotoxic activity at concentrations of <10 µM. Polyphemusin III caused fast permeabilization of the cytoplasmic membrane of human leukemia cells HL-60, which was measured with trypan blue exclusion assay and lactate dehydrogenase-release assay. Flow cytometry experiments for annexin V-FITC/ propidium iodide double staining revealed that the caspase inhibitor, Z-VAD-FMK, did not abrogate disruption of the plasma membrane by polyphemusin III. Our data suggest that polyphemusin III disrupts the plasma membrane integrity and induces cell death that is apparently not related to apoptosis. In comparison to known polyphemusins and tachyplesins, polyphemusin III demonstrates a similar or lower antimicrobial effect, but significantly higher cytotoxicity against human cancer and transformed cells in vitro.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Antineoplásicos/farmacología , Bacterias/efectos de los fármacos , Cangrejos Herradura/metabolismo , Células A549 , Animales , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Astrocitos , Membrana Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Células HL-60 , Células HeLa , Cangrejos Herradura/genética , Humanos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Cultivo Primario de Células , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología
13.
Mar Drugs ; 16(11)2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30360541

RESUMEN

Endogenous antimicrobial peptides (AMPs) are among the earliest molecular factors in the evolution of animal innate immunity. In this study, novel AMPs named nicomicins were identified in the small marine polychaeta Nicomache minor in the Maldanidae family. Full-length mRNA sequences encoded 239-residue prepropeptides consisting of a putative signal sequence region, the BRICHOS domain within an acidic proregion, and 33-residue mature cationic peptides. Nicomicin-1 was expressed in the bacterial system, and its spatial structure was analyzed by circular dichroism and nuclear magnetic resonance spectroscopy. Nicomicins are unique among polychaeta AMPs scaffolds, combining an amphipathic N-terminal α-helix and C-terminal extended part with a six-residue loop stabilized by a disulfide bridge. This structural arrangement resembles the Rana-box motif observed in the α-helical host-defense peptides isolated from frog skin. Nicomicin-1 exhibited strong in vitro antimicrobial activity against Gram-positive bacteria at submicromolar concentrations. The main mechanism of nicomicin-1 action is based on membrane damage but not on the inhibition of bacterial translation. The peptide possessed cytotoxicity against cancer and normal adherent cells as well as toward human erythrocytes.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/farmacología , Poliquetos/genética , Secuencia de Aminoácidos , Animales , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Células Sanguíneas/efectos de los fármacos , Línea Celular , Células HeLa , Hemólisis , Humanos , Fragmentos de Péptidos/genética , Filogenia , Poliquetos/química , Poliquetos/metabolismo , Conformación Proteica , Dominios Proteicos , Homología de Secuencia de Aminoácido
14.
J Pept Sci ; 22(2): 82-91, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26814379

RESUMEN

New bioengineering approaches are required for development of more active and less toxic antimicrobial peptides. In this study we used ß-hairpin antimicrobial peptide arenicin-1 as a template for design of more potent antimicrobials. In particular, six shortened 17-residue analogs were obtained by recombinant expression in Escherichia coli. Besides, we have introduced the second disulfide bridge by analogy with the structure of tachyplesins. As a result, a number of analogs with enhanced activity and cell selectivity were developed. In comparison with arenicin-1, which acts on cell membranes with low selectivity, the most potent and promising its analog termed ALP1 possessed two-fold higher antibacterial activity and did not affect viability of mammalian cells at concentration up to 50 µM. The therapeutic index of ALP1 against both Gram-positive and Gram-negative bacteria was significantly increased compared with that of arenicin-1 while the mechanism of action remained the same. Like arenicin-1, the analog rapidly disrupt membranes of both stationary and exponential phase bacterial cells and effectively kills multidrug-resistant Gram-negative bacteria. Furthermore, ALP1 was shown to bind DNA in vitro at a ratio of 1:1 (w/w). The circular dichroism spectra demonstrated that secondary structures of the shortened analogs were similar to that of arenicin-1 in water solution, but significantly differed in membrane-mimicking environments. This work shows that a strand length is one of the key parameters affecting cell selectivity of ß-hairpin antimicrobial peptides.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas del Helminto/farmacología , Secuencia de Aminoácidos , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/genética , Eritrocitos/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Proteínas del Helminto/química , Proteínas del Helminto/genética , Hemólisis , Humanos , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Permeabilidad , Plásmidos/química , Unión Proteica , Ingeniería de Proteínas , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
15.
J Pept Sci ; 21(2): 105-13, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25557880

RESUMEN

ß-Hairpin antimicrobial peptides are among the most potent peptide antibiotics of animal origin. Arenicins, isolated earlier from marine polychaeta lugworm Arenicola marina, belong to a family of ß-hairpin antimicrobial peptides and display a broad spectrum of biological activities. However, despite being potent antimicrobials, arenicins are partially unapplicable as therapeutics as a result of their relatively high cytotoxicity against mammalian cells. In this study, a template-based approach was used to create therapeutically valuable analogs of arenicin-1 and identify amino acid residues important for antibacterial and cytotoxic activities of the peptide. The plasmids encoding recombinant analogs were constructed by mutagenesis technique based on inverse PCR amplification of the whole arenicin-1 expression plasmid. The analogs were produced as a part of the fusion proteins in Escherichia coli. It was shown that an obvious reduction in hemolytic activity without lose of antimicrobial activity can be achieved by a single amino acid substitution in the non-polar face of the molecule with hydrophilic residues such as serine and arginine. As the result, the selective analog with 50-fold improved therapeutic index was developed. The circular dichroism spectra demonstrated that the secondary structure of the analog was similar to the natural arenicin-1 in water solution and sodium dodecyl sulfate micelles but significantly differed in the presence of dodecylphosphocholine micelles mimicking mammalian membranes. Similarly to arenicin-1, the designed analog killed bacteria via induction of the membrane damage, assessed using the fluorescent dye SYTOX Green uptake. Our results afford molecular insight into mechanism of antimicrobial action of the designed arenicin analogs and their possible clinical application.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Diseño de Fármacos , Escherichia coli/efectos de los fármacos , Proteínas del Helminto/química , Proteínas del Helminto/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Proteínas del Helminto/aislamiento & purificación , Ensayos Analíticos de Alto Rendimiento , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA