Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Food Microbiol ; 123: 104595, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038899

RESUMEN

Listeria monocytogenes (Lm) is a pathogenic bacteria able to grow at refrigerated temperatures, widely distributed in the environment. This bacteria is susceptible to contaminate various food products of which refrigerated ready-to-eat foods (RTEF) may pose a risk for public health. In Europe, food business operators (FBOs) shall ensure that foodstuffs comply with the relevant microbiological criteria set out in the Regulation (EC) N°2073/2005. Food safety criteria for Lm are defined in RTEF throughout their shelf-life. FBOs should implement studies to demonstrate that the concentration of Lm does not exceed 100 CFU/g at the end of the shelf-life, taking into account foreseeable conditions of distributions, storage and use, including the use by consumers. However, this last part of the cold chain for food products is the most difficult to capture and control. For this purpose, the European Union Reference Laboratory for Lm (EURL Lm) launched an inquiry to its National Reference Laboratory network and reviewed the scientific literature from 2002 to 2020. The outcomes were integrated in the technical guidance document of the EURL Lm to assess shelf-life of RTEF which resulted in the recommendation to use 10 °C as the reference temperature to simulate the reasonably foreseen storage conditions in domestic refrigerators.


Asunto(s)
Microbiología de Alimentos , Almacenamiento de Alimentos , Listeria monocytogenes , Refrigeración , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/aislamiento & purificación , Europa (Continente) , Comida Rápida/microbiología , Contaminación de Alimentos/análisis , Inocuidad de los Alimentos , Temperatura , Humanos , Seguridad de Productos para el Consumidor , Frío , Unión Europea
2.
Front Microbiol ; 8: 296, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28316592

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) are responsible for human infections, ranging from mild watery diarrhea to hemorrhagic colitis (CH) that may be complicated by hemolytic uremic syndrome (HUS). The main STEC virulence factor is Shiga toxin encoded by the stx gene, located in the genome of a bacteriophage integrated into the bacterial chromosome. The serotype O26:H11 is the second HUS-causing serotype worldwide (after O157:H7), and the first found in dairy products such as raw-milk cheeses. A small number of HUS cases identified each year in France are caused by serotype O26:H11. Stx phage induction is known to result in STEC lysis and release of new Stx phages particles. This phenomenon could negatively impact STEC screening in foods based on stx gene detection by PCR. Here, we evaluated the influence of physicochemical parameters related to cheese-making process on the induction rate of Stx phages from STEC O26:H11, including H2O2, NaCl, lactic acid and temperature. In addition, selective agents from the analytical STEC enrichment and detection procedure (XP CEN ISO/TS 13136) were tested, including novobiocin, acrifavin, cefixim-tellurite, and bile salts. An impact of H2O2 and NaCl on Stx phage induction was observed. Production of Stx phages was also observed during a real cheese-making process. By contrast, no significant effect could be demonstrated for the chemical agents of the STEC detection procedure when tested separately, except for acriflavin and novobiocin which reduced Stx1 phage production in some cases. In conclusion, these results suggest that the cheese-making process might trigger the production of Stx phages, potentially interfering with the analysis of STEC in food.

3.
Appl Environ Microbiol ; 82(7): 2177-2186, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26826235

RESUMEN

Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria are foodborne pathogens responsible for diarrhea and hemolytic-uremic syndrome (HUS). Shiga toxin, the main STEC virulence factor, is encoded by the stx gene located in the genome of a bacteriophage inserted into the bacterial chromosome. The O26:H11 serotype is considered to be the second-most-significant HUS-causing serotype worldwide after O157:H7. STEC O26:H11 bacteria and their stx-negative counterparts have been detected in dairy products. They may convert from the one form to the other by loss or acquisition of Stx phages, potentially confounding food microbiological diagnostic methods based on stx gene detection. Here we investigated the diversity and mobility of Stx phages from human and dairy STEC O26:H11 strains. Evaluation of their rate of in vitro induction, occurring either spontaneously or in the presence of mitomycin C, showed that the Stx2 phages were more inducible overall than Stx1 phages. However, no correlation was found between the Stx phage levels produced and the origin of the strains tested or the phage insertion sites. Morphological analysis by electron microscopy showed that Stx phages from STEC O26:H11 displayed various shapes that were unrelated to Stx1 or Stx2 types. Finally, the levels of sensitivity of stx-negative E. coli O26:H11 to six Stx phages differed among the 17 strains tested and our attempts to convert them into STEC were unsuccessful, indicating that their lysogenization was a rare event.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Productos Lácteos/microbiología , Infecciones por Escherichia coli/microbiología , Escherichia coli Shiga-Toxigénica/patogenicidad , Escherichia coli Shiga-Toxigénica/virología , Bacteriófagos/genética , Bacteriófagos/crecimiento & desarrollo , Bacteriófagos/metabolismo , Humanos , Lisogenia , Filogenia , Toxina Shiga/metabolismo , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Virulencia
4.
Appl Environ Microbiol ; 81(11): 3712-21, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25819955

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) is a food-borne pathogen that may be responsible for severe human infections. Only a limited number of serotypes, including O26:H11, are involved in the majority of serious cases and outbreaks. The main virulence factors, Shiga toxins (Stx), are encoded by bacteriophages. Seventy-four STEC O26:H11 strains of various origins (including human, dairy, and cattle) were characterized for their stx subtypes and Stx phage chromosomal insertion sites. The majority of food and cattle strains possessed the stx(1a) subtype, while human strains carried mainly stx(1a) or stx(2a). The wrbA and yehV genes were the main Stx phage insertion sites in STEC O26:H11, followed distantly by yecE and sbcB. Interestingly, the occurrence of Stx phages inserted in the yecE gene was low in dairy strains. In most of the 29 stx-negative E. coli O26:H11 strains also studied here, these bacterial insertion sites were vacant. Multilocus sequence typing of 20 stx-positive or stx-negative E. coli O26:H11 strains showed that they were distributed into two phylogenetic groups defined by sequence type 21 (ST21) and ST29. Finally, an EspK-carrying phage was found inserted in the ssrA gene in the majority of the STEC O26:H11 strains but in only a minority of the stx-negative E. coli O26:H11 strains. The differences in the stx subtypes and Stx phage insertion sites observed in STEC O26:H11 according to their origin might reflect that strains circulating in cattle and foods are clonally distinct from those isolated from human patients.


Asunto(s)
Colifagos/genética , Variación Genética , Profagos/genética , Toxina Shiga/genética , Escherichia coli Shiga-Toxigénica/clasificación , Escherichia coli Shiga-Toxigénica/genética , Animales , Bovinos , Análisis por Conglomerados , Productos Lácteos/microbiología , Infecciones por Escherichia coli/microbiología , Genotipo , Humanos , Tipificación de Secuencias Multilocus , Filogenia , Recombinación Genética , Serogrupo , Escherichia coli Shiga-Toxigénica/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA