Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Neurotherapeutics ; 11(3): 623-35, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24752661

RESUMEN

In human gliomas, the RTK/RAS/PI(3)K signaling pathway is nearly always altered. We present a model of experimental gliomagenesis that elucidates the contributions of genes involved in this pathway (PDGF-B ligand, HRAS-G12V, and AKT). We also examine the effect on gliomagenesis by the potential modifier gene, IDH1-R132H. Injections of lentiviral-encoded oncogenes induce de novo gliomas of varying penetrance, tumor progression, and histological grade depending on the specific oncogenes used. Our model mimics hallmark histological structures of high-grade glioma, such as pseudopalisades, glomeruloid microvascular proliferation, and diffuse tumor invasion. We use our model of gliomagenesis to test the efficacy of an experimental brain tumor gene therapy. Our model allowed us to test the contributions of oncogenes in the RTK/RAS/PI(3)K pathway, and their potential modification by over-expression of mutated IDH1, in glioma development and progression in rats. Our model constitutes a clinically relevant system to study gliomagenesis, the effects of modifier genes, and the efficacy of experimental therapeutics.


Asunto(s)
Neoplasias Encefálicas/genética , Glioma/genética , Isocitrato Deshidrogenasa/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-sis/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/terapia , Modelos Animales de Enfermedad , Terapia Genética , Glioma/mortalidad , Glioma/terapia , Humanos , Lentivirus/genética , Mutación , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Análisis de Supervivencia
2.
Proc Natl Acad Sci U S A ; 109(20): 7835-40, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22547816

RESUMEN

Following antigen recognition on target cells, effector T cells establish immunological synapses and secrete cytokines. It is thought that T cells secrete cytokines in one of two modes: either synaptically (i.e., toward antigenic target cells) or multidirectionally, affecting a wider population of cells. This paradigm predicts that synaptically secreted cytokines such as IFN-γ will preferentially signal to antigenic target cells contacted by the T cell through an immunological synapse. Despite its physiological significance, this prediction has never been tested. We developed a live-cell imaging system to compare the responses of target cells and nonantigenic bystanders to IFN-γ secreted by CD8+, antigen-specific, cytotoxic T cells. Both target cells and surrounding nontarget cells respond robustly. This pattern of response was detected even at minimal antigenic T-cell stimulation using low doses of antigenic peptide, or altered peptide ligands. Although cytotoxic immunological synapses restrict killing to antigenic target cells, the effects of IFN-γ are more widespread.


Asunto(s)
Sinapsis Inmunológicas/inmunología , Interferón gamma/metabolismo , Linfocitos T Citotóxicos/inmunología , Adenoviridae , Análisis de Varianza , Astrocitos/inmunología , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes , Procesamiento de Imagen Asistido por Computador , Interferón gamma/inmunología , Microscopía/métodos
3.
Mol Ther ; 20(4): 808-19, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22233583

RESUMEN

The adaptive immune response to viral vectors reduces vector-mediated transgene expression from the brain. It is unknown, however, whether this loss is caused by functional downregulation of transgene expression or death of transduced cells. Herein, we demonstrate that during the elimination of transgene expression, the brain becomes infiltrated with CD4(+) and CD8(+) T cells and that these T cells are necessary for transgene elimination. Further, the loss of transgene-expressing brain cells fails to occur in the absence of IFNγ, perforin, and TNFα receptor. Two methods to induce severe immune suppression in immunized animals also fail to restitute transgene expression, demonstrating the irreversibility of this process. The need for cytotoxic molecules and the irreversibility of the reduction in transgene expression suggested to us that elimination of transduced cells is responsible for the loss of transgene expression. A new experimental paradigm that discriminates between downregulation of transgene expression and the elimination of transduced cells demonstrates that transduced cells are lost from the brain upon the induction of a specific antiviral immune response. We conclude that the anti-adenoviral immune response reduces transgene expression in the brain through loss of transduced cells.


Asunto(s)
Encéfalo/citología , Interferón gamma/metabolismo , Perforina/metabolismo , Transducción Genética/métodos , Transgenes/genética , Factor de Necrosis Tumoral alfa/metabolismo , Adenoviridae/genética , Animales , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Citometría de Flujo , Inmunohistoquímica , Ratones , Ratones Noqueados , Ratones Transgénicos
4.
PLoS One ; 6(8): e23523, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21897844

RESUMEN

CD8(+) T cells infiltrate the brain during an anti-viral immune response. Within the brain CD8(+) T cells recognize cells expressing target antigens, become activated, and secrete IFNγ. However, there are no methods to recognize individual cells that respond to IFNγ. Using a model that studies the effects of the systemic anti-adenoviral immune response upon brain cells infected with an adenoviral vector in mice, we describe a method that identifies individual cells that respond to IFNγ. To identify individual mouse brain cells that respond to IFNγ we constructed a series of adenoviral vectors that contain a transcriptional response element that is selectively activated by IFNγ signaling, the gamma-activated site (GAS) promoter element; the GAS element drives expression of a transgene, Cre recombinase (Ad-GAS-Cre). Upon binding of IFNγ to its receptor, the intracellular signaling cascade activates the GAS promoter, which drives expression of the transgene Cre recombinase. We demonstrate that upon activation of a systemic immune response against adenovirus, CD8(+) T cells infiltrate the brain, interact with target cells, and cause an increase in the number of cells expressing Cre recombinase. This method can be used to identify, study, and eventually determine the long term fate of infected brain cells that are specifically targeted by IFNγ. The significance of this method is that it will allow to characterize the networks in the brain that respond to the specific secretion of IFNγ by anti-viral CD8(+) T cells that infiltrate the brain. This will allow novel insights into the cellular and molecular responses underlying brain immune responses.


Asunto(s)
Antivirales/metabolismo , Encéfalo/citología , Encéfalo/inmunología , Linfocitos T CD8-positivos/inmunología , Interferón gamma/metabolismo , Imagen Molecular/métodos , Transducción de Señal/inmunología , Adenoviridae/genética , Animales , Encéfalo/metabolismo , Encéfalo/virología , Femenino , Genes Reporteros/genética , Vectores Genéticos/genética , Herpesvirus Humano 1/genética , Integrasas/metabolismo , Interferón gamma/genética , Masculino , Ratones , Regiones Promotoras Genéticas/genética , Especificidad de la Especie , Timidina Quinasa/genética
5.
Proc Natl Acad Sci U S A ; 107(32): 14443-8, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20660723

RESUMEN

Soluble antigens diffuse out of the brain and can thus stimulate a systemic immune response, whereas particulate antigens (from infectious agents or tumor cells) remain within brain tissue, thus failing to stimulate a systemic immune response. Immune privilege describes how the immune system responds to particulate antigens localized selectively within the brain parenchyma. We believe this immune privilege is caused by the absence of antigen presenting dendritic cells from the brain. We tested the prediction that expression of fms-like tyrosine kinase ligand 3 (Flt3L) in the brain will recruit dendritic cells and induce a systemic immune response against exogenous influenza hemagglutinin in BALB/c mice. Coexpression of Flt3L with HA in the brain parenchyma induced a robust systemic anti-HA immune response, and a small response against myelin basic protein and proteolipid protein epitopes. Depletion of CD4(+)CD25+ regulatory T cells (Tregs) enhanced both responses. To investigate the autoimmune impact of these immune responses, we characterized the neuropathological and behavioral consequences of intraparenchymal injections of Flt3L and HA in BALB/c and C57BL/6 mice. T cell infiltration in the forebrain was time and strain dependent, and increased in animals treated with Flt3L and depleted of Tregs; however, we failed to detect widespread defects in myelination throughout the forebrain or spinal cord. Results of behavioral tests were all normal. These results demonstrate that Flt3L overcomes the brain's immune privilege, and supports the clinical development of Flt3L as an adjuvant to stimulate clinically effective immune responses against brain neo-antigens, for example, those associated with brain tumors.


Asunto(s)
Encéfalo/inmunología , Sistema Inmunológico/inmunología , Tirosina Quinasa 3 Similar a fms/inmunología , Adyuvantes Inmunológicos , Animales , Antígenos/inmunología , Células Dendríticas/inmunología , Hemaglutininas/inmunología , Inmunidad , Ligandos , Ratones , Ratones Endogámicos BALB C , Prosencéfalo/inmunología , Médula Espinal/inmunología , Linfocitos T Reguladores/inmunología
6.
J Virol ; 84(12): 6007-17, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20375153

RESUMEN

Glioblastoma multiforme (GBM) is a deadly primary brain tumor. Conditional cytotoxic/immune-stimulatory gene therapy (Ad-TK and Ad-Flt3L) elicits tumor regression and immunological memory in rodent GBM models. Since the majority of patients enrolled in clinical trials would exhibit adenovirus immunity, which could curtail transgene expression and therapeutic efficacy, we used high-capacity adenovirus vectors (HC-Ads) as a gene delivery platform. Herein, we describe for the first time a novel bicistronic HC-Ad driving constitutive expression of herpes simplex virus type 1 thymidine kinase (HSV1-TK) and inducible Tet-mediated expression of Flt3L within a single-vector platform. We achieved anti-GBM therapeutic efficacy with no overt toxicities using this bicistronic HC-Ad even in the presence of systemic Ad immunity. The bicistronic HC-Ad-TK/TetOn-Flt3L was delivered into intracranial gliomas in rats. Survival, vector biodistribution, neuropathology, systemic toxicity, and neurobehavioral deficits were assessed for up to 1 year posttreatment. Therapeutic efficacy was also assessed in animals preimmunized against Ads. We demonstrate therapeutic efficacy, with vector genomes being restricted to the brain injection site and an absence of overt toxicities. Importantly, antiadenoviral immunity did not inhibit therapeutic efficacy. These data represent the first report of a bicistronic vector platform driving the expression of two therapeutic transgenes, i.e., constitutive HSV1-TK and inducible Flt3L genes. Further, our data demonstrate no promoter interference and optimum gene delivery and expression from within this single-vector platform. Analysis of the efficacy, safety, and toxicity of this bicistronic HC-Ad vector in an animal model of GBM strongly supports further preclinical testing and downstream process development of HC-Ad-TK/TetOn-Flt3L for a future phase I clinical trial for GBM.


Asunto(s)
Adenoviridae/genética , Técnicas de Transferencia de Gen , Glioma/genética , Glioma/terapia , Herpesvirus Humano 1/enzimología , Timidina Quinasa/uso terapéutico , Proteínas Virales/uso terapéutico , Tirosina Quinasa 3 Similar a fms/uso terapéutico , Adenoviridae/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Terapia Genética , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Glioma/metabolismo , Herpesvirus Humano 1/genética , Humanos , Ratas , Ratas Endogámicas Lew , Timidina Quinasa/genética , Timidina Quinasa/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo
7.
Methods Mol Biol ; 434: 239-66, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18470649

RESUMEN

Regulatable promoter systems allow gene expression to be tightly controlled in vivo. This is highly desirable for the development of safe, efficacious adenoviral vectors that can be used to treat human diseases in the clinic. Ideally, regulatable cassettes should have minimal gene expression in the "OFF" state, and expression should quickly reach therapeutic levels in the "ON" state. In addition, the components of regulatable cassettes should be non-toxic at physiological concentrations and should not be immunogenic, especially when treating chronic illness that requires long-lasting gene expression. In this chapter, we will describe in detail protocols to develop and validate first generation (Ad) and high-capacity adenoviral (HC-Ad) vectors that express therapeutic genes under the control of the TetON regulatable system. Our laboratory has successfully used these protocols to regulate the expression of marker genes, immune stimulatory genes, and toxins for cancer gene therapeutics, i.e., glioma that is a deadly form of brain cancer. We have shown that this third generation TetON regulatable system, incorporating a doxycycline (DOX)-sensitive rtTA(2)S-M2 inducer and tTS(Kid) silencer, is non-toxic, relatively non-immunogenic, and can tightly regulate reporter transgene expression downstream of a TRE promoter from adenoviral vectors in vitro and also in vivo.


Asunto(s)
Adenoviridae/genética , Regulación de la Expresión Génica , Terapia Genética/métodos , Vectores Genéticos/uso terapéutico , Glioma/metabolismo , Glioma/terapia , Transgenes/fisiología , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Antibacterianos/uso terapéutico , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Southern Blotting , Células Cultivadas , Toxina Diftérica/genética , Toxina Diftérica/metabolismo , Doxiciclina/uso terapéutico , Exotoxinas/genética , Exotoxinas/metabolismo , Glioma/genética , Humanos , Tetraciclina/uso terapéutico , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Exotoxina A de Pseudomonas aeruginosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA