Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Cell Biochem ; 125(3): e30523, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38239037

RESUMEN

Parkinson's disease (PD) is among the most prevalent neurodegenerative disorders, affecting over 10 million people worldwide. The protein encoded by the SNCA gene, alpha-synuclein (ASYN), is the major component of Lewy body (LB) aggregates, a histopathological hallmark of PD. Mutations and posttranslational modifications (PTMs) in ASYN are known to influence protein aggregation and LB formation, possibly playing a crucial role in PD pathogenesis. In this work, we applied computational methods to characterize the effects of missense mutations and PTMs on the structure and function of ASYN. Missense mutations in ASYN were compiled from the literature/databases and underwent a comprehensive predictive analysis. Phosphorylation and SUMOylation sites of ASYN were retrieved from databases and predicted by algorithms. ConSurf was used to estimate the evolutionary conservation of ASYN amino acids. Molecular dynamics (MD) simulations of ASYN wild-type and variants A30G, A30P, A53T, and G51D were performed using the GROMACS package. Seventy-seven missense mutations in ASYN were compiled. Although most mutations were not predicted to affect ASYN stability, aggregation propensity, amyloid formation, and chaperone binding, the analyzed mutations received relatively high rates of deleterious predictions and predominantly occurred at evolutionarily conserved sites within the protein. Moreover, our predictive analyses suggested that the following mutations may be possibly harmful to ASYN and, consequently, potential targets for future investigation: K6N, T22I, K34E, G36R, G36S, V37F, L38P, G41D, and K102E. The MD analyses pointed to remarkable flexibility and essential dynamics alterations at nearly all domains of the studied variants, which could lead to impaired contact between NAC and the C-terminal domain triggering protein aggregation. These alterations may have functional implications for ASYN and provide important insight into the molecular mechanism of PD, supporting the design of future biomedical research and improvements in existing therapies for the disease.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/metabolismo , Agregado de Proteínas , Procesamiento Proteico-Postraduccional/genética , Mutación
2.
J Ethnopharmacol ; 285: 114903, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890731

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Euphorbia tirucalli L., a tropical and subtropical plant, also known by the popular name avelós, has been used in folk medicine against many diseases as rheumatism, asthma, toothache, and cancer. Studies have shown that natural compounds contained in this plant species may be associated with these functions. However, little is known about its potential toxicity. AIM OF THE STUDY: Several proteins conduct biological functions, in particular, proteinases, play a crucial role in many mechanisms of living beings, including plants, animals and microorganisms. However, when poorly regulated, they can generate consequences, such as the non-production of certain substances, or even the abnormal multiplication of cells, which leads to tumors. On the other hand, by regulating these enzymes, proteinase inhibitors act by reducing the activity of proteinases, thus preventing their malfunction. The objective of this work was to evaluate the toxicity of the protein extract of E. tirucalli and to purify a protease inhibitor that may be associated with the biological medicinal functions of the plant. MATERIALS AND METHODS: The cytotoxic and mutagenic properties of the protein extract produced from the stem of avelós was investigated using the Ames test. The protein extract was also submitted to a protease inhibitor purification process using the gel filtration chromatography technique and the purified protein was biochemically characterized. RESULTS: A protease inhibitor, called tirustatin, was isolated 1.84-fold by Biogel P100. The calculated molecular mass of the isolated protein is 25.97 kDa. The inhibitor was stable at pH 3-10, with pronounced activity at pH 6. Thermostability was observed even at elevated temperature (100 °C) with inhibitory activity increased by 1.14-fold compared to inhibitor activity at room temperature. Incubation at basic pH values for up to 60 min caused little reduction (0.25-fold) in the papain inhibitory activity of tirustatin. The stoichiometry of the papain-tirustatin interaction was 1.5: 1 and 28.8 pM of the inhibitor effected 50% inhibition. With an equilibrium dissociation constant of 8.74 x 10-8M for the papain enzyme, it is possible to evaluate the isolated protein as a non-competitive inhibitor. In addition, the protein extract of E. tirucalli even at the maximum concentration used (20 µg/mL), did not show a cytotoxic and mutagenic profile in a bacterial model. CONCLUSION: The results presented in this work provide data that reinforce the idea of the potential use of proteins produced in E. tirucalli as pharmacological and biotechnological agents that can be exploited for the development of efficient drugs.


Asunto(s)
Euphorbia/química , Fitoterapia/efectos adversos , Extractos Vegetales/toxicidad , Proteínas de Plantas/farmacología , Proteínas de Plantas/toxicidad , Calor , Concentración de Iones de Hidrógeno , Pruebas de Mutagenicidad , Extractos Vegetales/química , Hojas de la Planta/química , Proteínas de Plantas/química , Tallos de la Planta/química , Salmonella
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA