Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
EJNMMI Phys ; 10(1): 73, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37993667

RESUMEN

INTRODUCTION: Commissioning, calibration, and quality control procedures for nuclear medicine imaging systems are typically performed using hollow containers filled with radionuclide solutions. This leads to multiple sources of uncertainty, many of which can be overcome by using traceable, sealed, long-lived surrogate sources containing a radionuclide of comparable energies and emission probabilities. This study presents the results of a quantitative SPECT/CT imaging comparison exercise performed within the MRTDosimetry consortium to assess the feasibility of using 133Ba as a surrogate for 131I imaging. MATERIALS AND METHODS: Two sets of four traceable 133Ba sources were produced at two National Metrology Institutes and encapsulated in 3D-printed cylinders (volume range 1.68-107.4 mL). Corresponding hollow cylinders to be filled with liquid 131I and a mounting baseplate for repeatable positioning within a Jaszczak phantom were also produced. A quantitative SPECT/CT imaging comparison exercise was conducted between seven members of the consortium (eight SPECT/CT systems from two major vendors) based on a standardised protocol. Each site had to perform three measurements with the two sets of 133Ba sources and liquid 131I. RESULTS: As anticipated, the 131I pseudo-image calibration factors (cps/MBq) were higher than those for 133Ba for all reconstructions and systems. A site-specific cross-calibration reduced the performance differences between both radionuclides with respect to a cross-calibration based on the ratio of emission probabilities from a median of 12-1.5%. The site-specific cross-calibration method also showed agreement between 133Ba and 131I for all cylinder volumes, which highlights the potential use of 133Ba sources to calculate recovery coefficients for partial volume correction. CONCLUSION: This comparison exercise demonstrated that traceable solid 133Ba sources can be used as surrogate for liquid 131I imaging. The use of solid surrogate sources could solve the radiation protection problem inherent in the preparation of phantoms with 131I liquid activity solutions as well as reduce the measurement uncertainties in the activity. This is particularly relevant for stability measurements, which have to be carried out at regular intervals.

2.
Nucl Med Commun ; 44(5): 351-357, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36826407

RESUMEN

BACKGROUND: This work aimed to determine the implications of the variability in estimated glomerular filtration rate (eGFR) for the prediction of measured GFR (mGFR) for selection of sampling time-point in single-sample 99m Tc-diethylene-triamine-pentaacetate (DTPA) mGFR. METHODS: Patient studies were used to compare eGFR and mGFR ( n = 282). The eGFR was calculated using the Chronic Kidney Disease Epidemiology Collaboration 2009 equation, from serum creatinine values measured in the laboratory ( n = 27) or using a point-of-care testing device ( n = 255). The mGFR was taken as the true value, and the root mean square error (RMS err ) in eGFR was calculated. Receiver operator characteristic curves were generated comparing the sensitivity and specificity of eGFR for the prediction of mGFR within the British Nuclear Medicine Society (BNMS) 2018 guideline ranges. RESULTS: The overall eGFR RMS err was 19.3 mL/min/1.73 m 2 . Use of eGFR to predict mGFR in the ranges specified in the BNMS 2018 guidelines (25-50; 50-70; 70-100; and >100) achieved the following specificity and sensitivity for each individual range (97%, 71%; 92%, 47%; 81%, 48%; and 74%, 90%). For the middle ranges (50-70 and 70-100) the sensitivity is very low, less than 50%; more studies are classified incorrectly on the basis of eGFR in these ranges than correctly. CONCLUSION: This work shows that serum creatinine eGFR is not sufficiently accurate to predict the optimum single-sample time-point for 99m Tc-DTPA mGFR prior to measurement. It is the recommendation of this study that a single sampling time-point should be chosen for studies eGFR > 40 ml/min/1.73 m 2 as opposed to the use of eGFR to determine the sampling time-point.


Asunto(s)
Insuficiencia Renal Crónica , Pentetato de Tecnecio Tc 99m , Humanos , Tasa de Filtración Glomerular , Creatinina , Insuficiencia Renal Crónica/diagnóstico por imagen , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA