Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Theor Biol ; : 111892, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945471

RESUMEN

Across early childhood development, sleep behavior transitions from a biphasic pattern (a daytime nap and nighttime sleep) to a monophasic pattern (only nighttime sleep). The transition to consolidated nighttime sleep, which occurs in most children between 2- and 5-years-old, is a major developmental milestone and reflects interactions between the developing homeostatic sleep drive and circadian system. Using a physiologically-based mathematical model of the sleep-wake regulatory network constrained by observational and experimental data from preschool-aged participants, we analyze how developmentally-mediated changes in the homeostatic sleep drive may contribute to the transition from napping to non-napping sleep patterns. We establish baseline behavior by identifying parameter sets that model typical 2-year-old napping behavior and 5-year-old non-napping behavior. Then we vary six model parameters associated with the dynamics of and sensitivity to the homeostatic sleep drive between the 2-year-old and 5-year-old parameter values to induce the transition from biphasic to monophasic sleep. We analyze the individual contributions of these parameters to sleep patterning by independently varying their age-dependent developmental trajectories. Parameters vary according to distinct evolution curves and produce bifurcation sequences representing various ages of transition onset, transition durations, and transitional sleep patterns. Finally, we consider the ability of napping and non-napping light schedules to reinforce napping or promote a transition to consolidated sleep, respectively. These modeling results provide insight into the role of the homeostatic sleep drive in promoting interindividual variability in developmentally-mediated transitions in sleep behavior and lay foundations for the identification of light- or behavior-based interventions that promote healthy sleep consolidation in early childhood.

2.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38915505

RESUMEN

Chronic pain is a wide-spread condition that is debilitating and expensive to manage, costing the United States alone around $600 billion in 2010. In a common type of chronic pain called allodynia, non-painful stimuli produce painful responses with highly variable presentations across individuals. While the specific mechanisms remain unclear, allodynia is hypothesized to be caused by the dysregulation of excitatory-inhibitory (E-I) balance in pain-processing neural circuitry in the dorsal horn of the spinal cord. In this work, we analyze biophysically-motivated subcircuit structures that represent common motifs in neural circuits in layers I-II of the dorsal horn. These circuits are hypothesized to be part of the neural pathways that mediate two different types of allodynia: static and dynamic. We use neural firing rate models to describe the activity of populations of excitatory and inhibitory interneurons within each subcircuit. By accounting for experimentally-observed responses under healthy conditions, we specify model parameters defining populations of subcircuits that yield typical behavior under normal conditions. Then, we implement a sensitivity analysis approach to identify the mechanisms most likely to cause allodynia-producing dysregulation of the subcircuit's E-I signaling. We find that disruption of E-I balance generally occurs either due to downregulation of inhibitory signaling so that excitatory neurons are "released" from inhibitory control, or due to upregulation of excitatory neuron responses so that excitatory neurons "escape" their inhibitory control. Which of these mechanisms is most likely to occur, the subcircuit components involved in the mechanism, and the proportion of subcircuits exhibiting the mechanism can vary depending on the subcircuit structure. These results suggest specific hypotheses about diverse mechanisms that may be most likely responsible for allodynia, thus offering predictions for the high interindividual variability observed in allodynia and identifying targets for further experimental studies on the underlying mechanisms of this chronic pain condition.

4.
Front Neural Circuits ; 17: 1239096, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033788

RESUMEN

Forebrain acetylcholine (ACh) signaling has been shown to drive attention and learning. Recent experimental evidence of spatially and temporally constrained cholinergic signaling has sparked interest to investigate how it facilitates stimulus-induced learning. We use biophysical excitatory-inhibitory (E-I) multi-module neural network models to show that external stimuli and ACh signaling can mediate spatially constrained synaptic potentiation patterns. The effects of ACh on neural excitability are simulated by varying the conductance of a muscarinic receptor-regulated hyperpolarizing slow K+ current (m-current). Each network module consists of an E-I network with local excitatory connectivity and global inhibitory connectivity. The modules are interconnected with plastic excitatory synaptic connections, that change via a spike-timing-dependent plasticity (STDP) rule. Our results indicate that spatially constrained ACh release influences the information flow represented by network dynamics resulting in selective reorganization of inter-module interactions. Moreover the information flow depends on the level of synchrony in the network. For highly synchronous networks, the more excitable module leads firing in the less excitable one resulting in strengthening of the outgoing connections from the former and weakening of its incoming synapses. For networks with more noisy firing patterns, activity in high ACh regions is prone to induce feedback firing of synchronous volleys and thus strengthening of the incoming synapses to the more excitable region and weakening of outgoing synapses. Overall, these results suggest that spatially and directionally specific plasticity patterns, as are presumed necessary for feature binding, can be mediated by spatially constrained ACh release.


Asunto(s)
Acetilcolina , Colinérgicos , Acetilcolina/metabolismo , Colinérgicos/farmacología , Sinapsis/metabolismo , Aprendizaje , Redes Neurales de la Computación , Plasticidad Neuronal
5.
Sci Rep ; 13(1): 8887, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264112

RESUMEN

Voltage gated sodium channels (VGSCs) are required for action potential initiation and propagation in mammalian neurons. As with other ion channel families, VGSC density varies between neurons. Importantly, sodium current (INa) density variability is reduced in pyramidal neurons of Scn1b null mice. Scn1b encodes the VGSC ß1/ ß1B subunits, which regulate channel expression, trafficking, and voltage dependent properties. Here, we investigate how variable INa density in cortical layer 6 and subicular pyramidal neurons affects spike patterning and network synchronization. Constitutive or inducible Scn1b deletion enhances spike timing correlations between pyramidal neurons in response to fluctuating stimuli and impairs spike-triggered average current pattern diversity while preserving spike reliability. Inhibiting INa with a low concentration of tetrodotoxin similarly alters patterning without impairing reliability, with modest effects on firing rate. Computational modeling shows that broad INa density ranges confer a similarly broad spectrum of spike patterning in response to fluctuating synaptic conductances. Network coupling of neurons with high INa density variability displaces the coupling requirements for synchronization and broadens the dynamic range of activity when varying synaptic strength and network topology. Our results show that INa heterogeneity between neurons potently regulates spike pattern diversity and network synchronization, expanding VGSC roles in the nervous system.


Asunto(s)
Neuronas , Sodio , Ratones , Animales , Sodio/metabolismo , Reproducibilidad de los Resultados , Tetrodotoxina/farmacología , Neuronas/metabolismo , Potenciales de Acción , Ratones Noqueados , Mamíferos/metabolismo , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo
6.
Front Neurosci ; 17: 1166203, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37360178

RESUMEN

Introduction: Mathematical modeling has played a significant role in understanding how homeostatic sleep pressure and the circadian rhythm interact to influence sleep-wake behavior. Pain sensitivity is also affected by these processes, and recent experimental results have measured the circadian and homeostatic components of the 24 h rhythm of thermal pain sensitivity in humans. To analyze how rhythms in pain sensitivity are affected by disruptions in sleep behavior and shifts in circadian rhythms, we introduce a dynamic mathematical model for circadian and homeostatic regulation of sleep-wake states and pain intensity. Methods: The model consists of a biophysically based, sleep-wake regulation network model coupled to data-driven functions for the circadian and homeostatic modulation of pain sensitivity. This coupled sleep-wake-pain sensitivity model is validated by comparison to thermal pain intensities in adult humans measured across a 34 h sleep deprivation protocol. Results: We use the model to predict dysregulation of pain sensitivity rhythms across different scenarios of sleep deprivation and circadian rhythm shifts, including entrainment to new environmental light and activity timing as occurs with jet lag and chronic sleep restriction. Model results show that increases in pain sensitivity occur under conditions of increased homeostatic sleep drive with nonlinear modulation by the circadian rhythm, leading to unexpected decreased pain sensitivity in some scenarios. Discussion: This model provides a useful tool for pain management by predicting alterations in pain sensitivity due to varying or disrupted sleep schedules.

7.
Pract Radiat Oncol ; 13(5): e400-e408, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37169149

RESUMEN

PURPOSE: Androgen deprivation therapy (ADT) combined with radiation treatment (RT) is recommended by the National Comprehensive Cancer Network guidelines for unfavorable intermediate and high-risk localized prostate cancer. Although there is a variable survival benefit conferred by ADT, there are potential side effects to consider for patient decision-making. We aimed to assess the side effects and bother of adding ADT to RT, the degree of regret, and what overall survival (OS) benefit men would want to justify adding or extending the duration of ADT, after their experience with this treatment. METHODS AND MATERIALS: Men receiving ADT with definitive RT completed a questionnaire asking about the side effects and degree of bother from ADT using a 4-point scale. They were also asked about regret, and what survival benefit would warrant ADT. RESULTS: In the study, 846 patients received definitive RT, of whom 356 received ADT and were asked about their experience with ADT. Of these, 234 responded (66%). In 54%, ADT caused some bother, most commonly hot flushes (32%), fatigue (29%), and sexual problems (29%). Five percent regretted receiving ADT "quite a lot" or "very much." Approximately one-third of men deemed a 1% OS benefit from ADT worthwhile, whereas one-third (34%) would want a >10% OS benefit enough to justify choosing ADT again. In addition, 49% of patients who received short-term ADT would accept longer duration ADT for a 6% OS benefit. CONCLUSIONS: Significant regret for ADT was low (5%). There was a clear dichotomy between those who deemed any OS benefit from ADT worthwhile versus those who needed a significant survival benefit to justify the side effects. Given that some men may change their opinion on the relative value of ADT after experiencing its effects, this study emphasizes the importance of revisiting patients after 6 months to given patients an opportunity to renegotiate their treatment.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/radioterapia , Antagonistas de Andrógenos/uso terapéutico , Andrógenos/uso terapéutico , Emociones
8.
Math Biosci ; 355: 108929, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36448821

RESUMEN

The temporal structure of human sleep changes across development as it consolidates from the polyphasic sleep of infants to the single nighttime sleep episode typical in adults. Experimental studies have shown that changes in the dynamics of sleep need may mediate this developmental transition in sleep patterning, however, it is unknown how sleep architecture interacts with these changes. We employ a physiologically-based mathematical model that generates wake, rapid eye movement (REM) and non-REM (NREM) sleep states to investigate how NREM-REM alternation affects the transition in sleep patterns as the dynamics of the homeostatic sleep drive are varied. To study the mechanisms producing these transitions, we analyze the bifurcations of numerically-computed circle maps that represent key dynamics of the full sleep-wake network model by tracking the evolution of sleep onsets across different circadian (∼ 24 h) phases. The maps are non-monotonic and discontinuous, being composed of branches that correspond to sleep-wake cycles containing distinct numbers of REM bouts. As the rates of accumulation and decay of the homeostatic sleep drive are varied, we identify the bifurcations that disrupt a period-adding-like behavior of sleep patterns in the transition between biphasic and monophasic sleep. These bifurcations include border collision and saddle-node bifurcations that initiate new sleep patterns, period-doubling bifurcations leading to higher-order patterns of NREM-REM alternation, and intervals of bistability of sleep patterns with different NREM-REM alternations. Furthermore, patterns of NREM-REM alternation exhibit variable behaviors in different regimes of constant sleep-wake patterns. Overall, the sequence of sleep-wake behaviors, and underlying bifurcations, in the transition from biphasic to monophasic sleep in this three-state model is more complex than behavior observed in models of sleep-wake regulation that do not consider the dynamics of NREM-REM alternation. These results suggest that interactions between the dynamics of the homeostatic sleep drive and the dynamics of NREM-REM alternation may contribute to the wide interindividual variation observed when young children transition from napping to non-napping behavior.


Asunto(s)
Sueño REM , Vigilia , Niño , Humanos , Preescolar , Sueño REM/fisiología , Vigilia/fisiología , Sueño/fisiología , Electroencefalografía
9.
Front Comput Neurosci ; 16: 903883, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051629

RESUMEN

Neural firing in many inhibitory networks displays synchronous assembly or clustered firing, in which subsets of neurons fire synchronously, and these subsets may vary with different inputs to, or states of, the network. Most prior analytical and computational modeling of such networks has focused on 1D networks or 2D networks with symmetry (often circular symmetry). Here, we consider a 2D discrete network model on a general torus, where neurons are coupled to two or more nearest neighbors in three directions (horizontal, vertical, and diagonal), and allow different coupling strengths in all directions. Using phase model analysis, we establish conditions for the stability of different patterns of clustered firing behavior in the network. We then apply our results to study how variation of network connectivity and the presence of heterogeneous coupling strengths influence which patterns are stable. We confirm and supplement our results with numerical simulations of biophysical inhibitory neural network models. Our work shows that 2D networks may exhibit clustered firing behavior that cannot be predicted as a simple generalization of a 1D network, and that heterogeneity of coupling can be an important factor in determining which patterns are stable.

10.
PLoS Comput Biol ; 18(6): e1009743, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35737717

RESUMEN

General anesthetics work through a variety of molecular mechanisms while resulting in the common end point of sedation and loss of consciousness. Generally, the administration of common anesthetics induces reduction in synaptic excitation while promoting synaptic inhibition. Exogenous modulation of the anesthetics' synaptic effects can help determine the neuronal pathways involved in anesthesia. For example, both animal and human studies have shown that exogenously induced increases in acetylcholine in the brain can elicit wakeful-like behavior despite the continued presence of the anesthetic. However, the underlying mechanisms of anesthesia reversal at the cellular level have not been investigated. Here we apply a computational model of a network of excitatory and inhibitory neurons to simulate the network-wide effects of anesthesia, due to changes in synaptic inhibition and excitation, and their reversal by cholinergic activation through muscarinic receptors. We use a differential evolution algorithm to fit model parameters to match measures of spiking activity, neuronal connectivity, and network dynamics recorded in the visual cortex of rodents during anesthesia with desflurane in vivo. We find that facilitating muscarinic receptor effects of acetylcholine on top of anesthetic-induced synaptic changes predicts the reversal of anesthetic suppression of neurons' spiking activity, functional connectivity, as well as pairwise and population interactions. Thus, our model predicts a specific neuronal mechanism for the cholinergic reversal of anesthesia consistent with experimental behavioral observations.


Asunto(s)
Anestesia , Anestésicos Generales , Acetilcolina/metabolismo , Acetilcolina/farmacología , Anestésicos Generales/farmacología , Animales , Corteza Cerebral/fisiología , Colinérgicos/farmacología
11.
Front Neural Circuits ; 16: 856926, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498371

RESUMEN

Hidden hearing loss (HHL) is a deficit in auditory perception and speech intelligibility that occurs despite normal audiometric thresholds and results from noise exposure, aging, or myelin defects. While mechanisms causing perceptual deficits in HHL patients are still unknown, results from animal models indicate a role for peripheral auditory neuropathies in HHL. In humans, sound localization is particularly important for comprehending speech, especially in noisy environments, and its disruption may contribute to HHL. In this study, we hypothesized that neuropathies of cochlear spiral ganglion neurons (SGNs) that are observed in animal models of HHL disrupt the activity of neurons in the medial superior olive (MSO), a nucleus in the brainstem responsible for locating low-frequency sound in the horizontal plane using binaural temporal cues, leading to sound localization deficits. To test our hypothesis, we constructed a network model of the auditory processing system that simulates peripheral responses to sound stimuli and propagation of responses via SGNs to cochlear nuclei and MSO populations. To simulate peripheral auditory neuropathies, we used a previously developed biophysical SGN model with myelin defects at SGN heminodes (myelinopathy) and with loss of inner hair cell-SGN synapses (synaptopathy). Model results indicate that myelinopathy and synaptopathy in SGNs give rise to decreased interaural time difference (ITD) sensitivity of MSO cells, suggesting a possible mechanism for perceptual deficits in HHL patients. This model may be useful to understand downstream impacts of SGN-mediated disruptions on auditory processing and to eventually discover possible treatments for various mechanisms of HHL.


Asunto(s)
Cóclea , Vaina de Mielina , Estimulación Acústica , Animales , Percepción Auditiva , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Humanos
12.
Front Netw Physiol ; 2: 975951, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36926113

RESUMEN

Rhythmic synchronization of neuronal firing patterns is a widely present phenomenon in the brain-one that seems to be essential for many cognitive processes. A variety of mechanisms contribute to generation and synchronization of network oscillations, ranging from intrinsic cellular excitability to network mediated effects. However, it is unclear how these mechanisms interact together. Here, using computational modeling of excitatory-inhibitory neural networks, we show that different synchronization mechanisms dominate network dynamics at different levels of excitation and inhibition (i.e. E/I levels) as synaptic strength is systematically varied. Our results show that with low synaptic strength networks are sensitive to external oscillatory drive as a synchronizing mechanism-a hallmark of resonance. In contrast, in a strongly-connected regime, synchronization is driven by network effects via the direct interaction between excitation and inhibition, and spontaneous oscillations and cross-frequency coupling emerge. Unexpectedly, we find that while excitation dominates network synchrony at low excitatory coupling strengths, inhibition dominates at high excitatory coupling strengths. Together, our results provide novel insights into the oscillatory modulation of firing patterns in different excitation/inhibition regimes.

13.
Eur J Neurosci ; 55(2): 354-376, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34894022

RESUMEN

Recently, a new type of Caenorhabditis elegans associative learning was reported, where nematodes learn to reach a target arm in an empty T-maze, after they have successfully located reward (food) in the same side arm of a similar, baited, training maze. Here, we present a simplified mathematical model of C. elegans chemosensory and locomotive circuitry that replicates C. elegans navigation in a T-maze and predicts the underlying mechanisms generating maze learning. Based on known neural circuitry, the model circuit responds to food-released chemical cues by modulating motor neuron activity that drives simulated locomotion. We show that, through modulation of interneuron activity, such a circuit can mediate maze learning by acquiring a turning bias, even after a single training session. Simulated nematode maze navigation during training conditions in food-baited mazes and during testing conditions in empty mazes is validated by comparing simulated behaviour with new experimental video data, extracted through the implementation of a custom-made maze tracking algorithm. Our work provides a mathematical framework for investigating the neural mechanisms underlying this novel learning behaviour in C. elegans. Model results predict neuronal components involved in maze and spatial learning and identify target neurons and potential neural mechanisms for future experimental investigations into this learning behaviour.


Asunto(s)
Caenorhabditis elegans , Locomoción , Animales , Caenorhabditis elegans/fisiología , Locomoción/fisiología , Aprendizaje por Laberinto , Neuronas Motoras , Recompensa
14.
iScience ; 24(10): 103129, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34622173

RESUMEN

Shift workers and many other groups experience irregular sleep-wake patterns. This can induce excessive daytime sleepiness that decreases productivity and elevates the risk of accidents. However, the degree of daytime sleepiness is not correlated with standard sleep parameters like total sleep time, suggesting other factors are involved. Here, we analyze real-world sleep-wake patterns of shift workers measured with wearables by developing a computational package that simulates homeostatic sleep pressure - physiological need for sleep - and the circadian rhythm. This reveals that shift workers who align sleep-wake patterns with their circadian rhythm have lower daytime sleepiness, even if they sleep less. The alignment, quantified by the sleep parameter, circadian sleep sufficiency, can be increased by dynamically adjusting daily sleep durations according to varying bedtimes. Our computational package provides flexible and personalized real-time sleep-wake patterns for individuals to reduce their daytime sleepiness and could be used with wearables to develop smart alarms.

15.
PLoS Comput Biol ; 17(7): e1009235, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34329297

RESUMEN

Theta and gamma rhythms and their cross-frequency coupling play critical roles in perception, attention, learning, and memory. Available data suggest that forebrain acetylcholine (ACh) signaling promotes theta-gamma coupling, although the mechanism has not been identified. Recent evidence suggests that cholinergic signaling is both temporally and spatially constrained, in contrast to the traditional notion of slow, spatially homogeneous, and diffuse neuromodulation. Here, we find that spatially constrained cholinergic stimulation can generate theta-modulated gamma rhythms. Using biophysically-based excitatory-inhibitory (E-I) neural network models, we simulate the effects of ACh on neural excitability by varying the conductance of a muscarinic receptor-regulated K+ current. In E-I networks with local excitatory connectivity and global inhibitory connectivity, we demonstrate that theta-gamma-coupled firing patterns emerge in ACh modulated network regions. Stable gamma-modulated firing arises within regions with high ACh signaling, while theta or mixed theta-gamma activity occurs at the peripheries of these regions. High gamma activity also alternates between different high-ACh regions, at theta frequency. Our results are the first to indicate a causal role for spatially heterogenous ACh signaling in the emergence of localized theta-gamma rhythmicity. Our findings also provide novel insights into mechanisms by which ACh signaling supports the brain region-specific attentional processing of sensory information.


Asunto(s)
Neuronas Colinérgicas/fisiología , Ritmo Gamma/fisiología , Modelos Neurológicos , Ritmo Teta/fisiología , Acetilcolina/farmacología , Acetilcolina/fisiología , Animales , Colinérgicos/farmacología , Neuronas Colinérgicas/efectos de los fármacos , Biología Computacional , Simulación por Computador , Ritmo Gamma/efectos de los fármacos , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Redes Neurales de la Computación , Prosencéfalo/efectos de los fármacos , Prosencéfalo/fisiología , Receptores Colinérgicos/efectos de los fármacos , Receptores Colinérgicos/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Ritmo Teta/efectos de los fármacos
16.
PLoS Comput Biol ; 17(4): e1008910, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33826606

RESUMEN

[This corrects the article DOI: 10.1371/journal.pcbi.1008499.].

17.
Math Biosci ; 336: 108591, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33775666

RESUMEN

Neurons in the inhibitory network of the striatum display cell assembly firing patterns which recent results suggest may consist of spatially compact neural clusters. Previous computational modeling of striatal neural networks has indicated that non-monotonic, distance-dependent coupling may promote spatially localized cluster firing. Here, we identify conditions for the existence and stability of cluster firing solutions in which clusters consist of spatially adjacent neurons in inhibitory neural networks. We consider simple non-monotonic, distance-dependent connectivity schemes in weakly coupled 1-D networks where cells make stronger connections with their kth nearest neighbors on each side and weaker connections with closer neighbors. Using the phase model reduction of the network system, we prove the existence of cluster solutions where neurons that are spatially close together are also synchronized in the same cluster, and find stability conditions for these solutions. Our analysis predicts the long-term behavior for networks of neurons, and we confirm our results by numerical simulations of biophysical neuron network models. Our results demonstrate that an inhibitory network with non-monotonic, distance-dependent connectivity can exhibit cluster solutions where adjacent cells fire together.


Asunto(s)
Modelos Neurológicos , Red Nerviosa , Potenciales de Acción , Simulación por Computador , Humanos , Red Nerviosa/fisiología , Neuronas/fisiología
18.
PLoS Comput Biol ; 17(1): e1008499, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33481777

RESUMEN

Hidden hearing loss (HHL) is an auditory neuropathy characterized by normal hearing thresholds but reduced amplitudes of the sound-evoked auditory nerve compound action potential (CAP). In animal models, HHL can be caused by moderate noise exposure or aging, which induces loss of inner hair cell (IHC) synapses. In contrast, recent evidence has shown that transient loss of cochlear Schwann cells also causes permanent auditory deficits in mice with similarities to HHL. Histological analysis of the cochlea after auditory nerve remyelination showed a permanent disruption of the myelination patterns at the heminode of type I spiral ganglion neuron (SGN) peripheral terminals, suggesting that this defect could be contributing to HHL. To shed light on the mechanisms of different HHL scenarios observed in animals and to test their impact on type I SGN activity, we constructed a reduced biophysical model for a population of SGN peripheral axons whose activity is driven by a well-accepted model of cochlear sound processing. We found that the amplitudes of simulated sound-evoked SGN CAPs are lower and have greater latencies when heminodes are disorganized, i.e. they occur at different distances from the hair cell rather than at the same distance as in the normal cochlea. These results confirm that disruption of heminode positions causes desynchronization of SGN spikes leading to a loss of temporal resolution and reduction of the sound-evoked SGN CAP. Another mechanism resulting in HHL is loss of IHC synapses, i.e., synaptopathy. For comparison, we simulated synaptopathy by removing high threshold IHC-SGN synapses and found that the amplitude of simulated sound-evoked SGN CAPs decreases while latencies remain unchanged, as has been observed in noise exposed animals. Thus, model results illuminate diverse disruptions caused by synaptopathy and demyelination on neural activity in auditory processing that contribute to HHL as observed in animal models and that can contribute to perceptual deficits induced by nerve damage in humans.


Asunto(s)
Pérdida Auditiva/fisiopatología , Vaina de Mielina , Sinapsis , Animales , Cóclea/fisiopatología , Nervio Coclear/fisiopatología , Modelos Animales de Enfermedad , Células Ciliadas Auditivas Internas/patología , Células Ciliadas Auditivas Internas/fisiología , Ratones , Modelos Neurológicos , Vaina de Mielina/patología , Vaina de Mielina/fisiología , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/fisiopatología , Sinapsis/patología , Sinapsis/fisiología
19.
Sci Rep ; 10(1): 19506, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177530

RESUMEN

We study the impact of light on the mammalian circadian system using the theory of phase response curves. Using a recently developed ansatz we derive a low-dimensional macroscopic model for the core circadian clock in mammals. Significantly, the variables and parameters in our model have physiological interpretations and may be compared with experimental results. We focus on the effect of four key factors which help shape the mammalian phase response to light: heterogeneity in the population of oscillators, the structure of the typical light phase response curve, the fraction of oscillators which receive direct light input and changes in the coupling strengths associated with seasonal day-lengths. We find these factors can explain several experimental results and provide insight into the processing of light information in the mammalian circadian system. In particular, we find that the sensitivity of the circadian system to light may be modulated by changes in the relative coupling forces between the light sensing and non-sensing populations. Finally, we show how seasonal day-length, after-effects to light entrainment and seasonal variations in light sensitivity in the mammalian circadian clock are interrelated.


Asunto(s)
Ritmo Circadiano/fisiología , Luz , Mamíferos/fisiología , Estaciones del Año , Animales , Relojes Circadianos/fisiología , Modelos Biológicos , Núcleo Supraquiasmático/fisiología
20.
J Theor Biol ; 504: 110401, 2020 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-32663506

RESUMEN

Adult humans exhibit high interindividual variation in habitual sleep durations, with short sleepers typically sleeping less than 6 h per night and long sleepers typically sleeping more than 9 h per night. Analysis of the time course of homeostatic sleep drive in habitual short and long sleepers has not identified differences between these groups, leading to the hypothesis that habitual short sleep results from increased tolerance to high levels of homeostatic sleep drive. Using a physiologically-based mathematical model of the sleep-wake regulatory network, we investigate responses to acute sleep deprivation in simulated populations of habitual long, regular and short sleepers that differ in daily levels of homeostatic sleep drive. The model predicts timing and durations of wake, rapid eye movement (REM), and non-REM (NREM) sleep episodes as modulated by the homeostatic sleep drive and the circadian rhythm, which is entrained to an external light cycle. Model parameters are fit to experimental measures of baseline sleep durations to construct simulated populations of individuals of each sleeper type. The simulated populations are validated against data for responses to specific acute sleep deprivation protocols. We use the model to predict responses to a wide range of sleep deprivation durations for each sleeper type. Model results predict that all sleeper types exhibit shorter sleep durations during recovery sleep that occurs in the morning, but, for recovery sleep times occurring later in the day, long and regular sleepers show longer and more variable sleep durations, and can suffer longer lasting disruption of daily sleep patterns compared to short sleepers. Additionally, short sleepers showed more resilience to sleep deprivation with longer durations of waking episodes following recovery sleep. These results support the hypothesis that differential responses to sleep deprivation between short and long sleepers result from differences in the tolerance for homeostatic sleep pressure.


Asunto(s)
Privación de Sueño , Sueño , Adulto , Ritmo Circadiano , Humanos , Sueño REM , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA