Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(26): 261001, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38996294

RESUMEN

Precision measurements by the Alpha Magnetic Spectrometer (AMS) on the International Space Station of the deuteron (D) flux are presented. The measurements are based on 21×10^{6} D nuclei in the rigidity range from 1.9 to 21 GV collected from May 2011 to April 2021. We observe that over the entire rigidity range the D flux exhibits nearly identical time variations with the p, ^{3}He, and ^{4}He fluxes. Above 4.5 GV, the D/^{4}He flux ratio is time independent and its rigidity dependence is well described by a single power law ∝R^{Δ} with Δ_{D/^{4}He}=-0.108±0.005. This is in contrast with the ^{3}He/^{4}He flux ratio for which we find Δ_{^{3}He/^{4}He}=-0.289±0.003. Above ∼13 GV we find a nearly identical rigidity dependence of the D and p fluxes with a D/p flux ratio of 0.027±0.001. These unexpected observations indicate that cosmic deuterons have a sizable primarylike component. With a method independent of cosmic ray propagation, we obtain the primary component of the D flux equal to 9.4±0.5% of the ^{4}He flux and the secondary component of the D flux equal to 58±5% of the ^{3}He flux.

2.
Phys Rev Lett ; 131(15): 151002, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37897756

RESUMEN

We present the precision measurements of 11 years of daily cosmic positron fluxes in the rigidity range from 1.00 to 41.9 GV based on 3.4×10^{6} positrons collected with the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station. The positron fluxes show distinctly different time variations from the electron fluxes at short and long timescales. A hysteresis between the electron fluxes and the positron fluxes is observed with a significance greater than 5σ at rigidities below 8.5 GV. On the contrary, the positron fluxes and the proton fluxes show similar time variation. Remarkably, we found that positron fluxes are modulated more than proton fluxes with a significance greater than 5σ for rigidities below 7 GV. These continuous daily positron fluxes, together with AMS daily electron, proton, and helium fluxes over an 11-year solar cycle, provide unique input to the understanding of both the charge-sign and mass dependencies of cosmic rays in the heliosphere.

3.
Phys Rev Lett ; 130(21): 211002, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37295095

RESUMEN

We report the properties of primary cosmic-ray sulfur (S) in the rigidity range 2.15 GV to 3.0 TV based on 0.38×10^{6} sulfur nuclei collected by the Alpha Magnetic Spectrometer experiment (AMS). We observed that above 90 GV the rigidity dependence of the S flux is identical to the rigidity dependence of Ne-Mg-Si fluxes, which is different from the rigidity dependence of the He-C-O-Fe fluxes. We found that, similar to N, Na, and Al cosmic rays, over the entire rigidity range, the traditional primary cosmic rays S, Ne, Mg, and C all have sizeable secondary components, and the S, Ne, and Mg fluxes are well described by the weighted sum of the primary silicon flux and the secondary fluorine flux, and the C flux is well described by the weighted sum of the primary oxygen flux and the secondary boron flux. The primary and secondary contributions of the traditional primary cosmic-ray fluxes of C, Ne, Mg, and S (even Z elements) are distinctly different from the primary and secondary contributions of the N, Na, and Al (odd Z elements) fluxes. The abundance ratio at the source for S/Si is 0.167±0.006, for Ne/Si is 0.833±0.025, for Mg/Si is 0.994±0.029, and for C/O is 0.836±0.025. These values are determined independent of cosmic-ray propagation.


Asunto(s)
Carbono , Magnesio , Neón , Azufre , Fenómenos Magnéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA