Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Pathol ; 187(11): 2461-2472, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29073967

RESUMEN

Pleural loculation affects about 30,000 patients annually in the United States and in severe cases can resolve with restrictive lung disease and pleural fibrosis. Pleural mesothelial cells contribute to pleural rind formation by undergoing mesothelial mesenchymal transition (MesoMT), whereby they acquire a profibrotic phenotype characterized by increased expression of α-smooth muscle actin and collagen 1. Components of the fibrinolytic pathway (urokinase plasminogen activator and plasmin) are elaborated in pleural injury and strongly induce MesoMT in vitro. These same stimuli enhance glycogen synthase kinase (GSK)-3ß activity through increased phosphorylation of Tyr-216 in pleural mesothelial cells and GSK-3ß mobilization from the cytoplasm to the nucleus. GSK-3ß down-regulation blocked induction of MesoMT. Likewise, GSK-3ß inhibitor 9ING41 blocked induction of MesoMT and reversed established MesoMT. Similar results were demonstrated in a mouse model of Streptococcus pneumoniae-induced empyema. Intraperitoneal administration of 9ING41, after the induction of pleural injury, attenuated injury progression and improved lung function (lung volume and compliance; P < 0.05 compared with untreated and vehicle controls). MesoMT marker α-smooth muscle actin was reduced in 9ING41-treated mice. Pleural thickening was also notably reduced in 9ING41-treated mice (P < 0.05). Collectively, these studies identify GSK-3ß as a newly identified target for amelioration of empyema-related pleural fibrosis and provide a strong rationale for further investigation of GSK-3ß signaling in the control of MesoMT and pleural injury.


Asunto(s)
Células Epiteliales/metabolismo , Epitelio/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Pulmón/metabolismo , Pleura/lesiones , Animales , Fibrinolisina/metabolismo , Ratones Endogámicos C57BL , Fosforilación , Neumonía/metabolismo
2.
Sci Rep ; 7(1): 4556, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28676645

RESUMEN

Fibrosis involves the production of extracellular matrix proteins in tissues and is often preceded by injury or trauma. In pleural fibrosis excess collagen deposition results in pleural thickening, increased stiffness and impaired lung function. Myofibroblasts are responsible for increased collagen deposition, however the molecular mechanism of transportation of procollagen containing vesicles for secretion is unknown. Here, we studied the role of kinesin on collagen-1 (Col-1) containing vesicle transportation in human pleural mesothelial cells (HPMCs). Among a number of cargo transporting kinesins, KIF5A was notably upregulated during TGF-ß induced mesothelial-mesenchymal transition (MesoMT). Using superresolution structured illumination microscopy and the DUO-Link technique, we found that KIF5A colocalized with Col-1 containing vesicles. KIF5A knock-down significantly reduced Col-1 secretion and attenuated TGF-ß induced increment in Col-1 localization at cell peripheries. Live cell imaging revealed that GFP-KIF5A and mCherry-Col-1 containing vesicles moved together. Kymography showed that these molecules continuously move with a mean velocity of 0.56 µm/sec, suggesting that the movement is directional but not diffusion limited process. Moreover, KIF5A was notably upregulated along with Col-1 and α-smooth muscle actin in pleural thickening in the carbon-black bleomycin mouse model. These results support our hypothesis that KIF5A is responsible for collagen transportation and secretion from HPMCs.


Asunto(s)
Colágeno/metabolismo , Cinesinas/metabolismo , Miofibroblastos/metabolismo , Enfermedades Pleurales/metabolismo , Enfermedades Pleurales/patología , Vesículas Secretoras/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Fibrosis , Expresión Génica , Humanos , Cinesinas/genética , Ratones , Enfermedades Pleurales/etiología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología
3.
Clin Transl Med ; 5(1): 17, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27271877

RESUMEN

BACKGROUND: Pleural infection affects about 65,000 patients annually in the US and UK. In this and other forms of pleural injury, mesothelial cells (PMCs) undergo a process called mesothelial (Meso) mesenchymal transition (MT), by which PMCs acquire a profibrogenic phenotype with increased expression of α-smooth muscle actin (α-SMA) and matrix proteins. MesoMT thereby contributes to pleural organization with fibrosis and lung restriction. Current murine empyema models are characterized by early mortality, limiting analysis of the pathogenesis of pleural organization and mechanisms that promote MesoMT after infection. METHODS: A new murine empyema model was generated in C57BL/6 J mice by intrapleural delivery of Streptococcus pneumoniae (D39, 3 × 10(7)-5 × 10(9) cfu) to enable use of genetically manipulated animals. CT-scanning and pulmonary function tests were used to characterize the physiologic consequences of organizing empyema. Histology, immunohistochemistry, and immunofluorescence were used to assess pleural injury. ELISA, cytokine array and western analyses were used to assess pleural fluid mediators and markers of MesoMT in primary PMCs. RESULTS: Induction of empyema was done through intranasal or intrapleural delivery of S. pneumoniae. Intranasal delivery impaired lung compliance (p < 0.05) and reduced lung volume (p < 0.05) by 7 days, but failed to reliably induce empyema and was characterized by unacceptable mortality. Intrapleural delivery of S. pneumoniae induced empyema by 24 h with lung restriction and development of pleural fibrosis which persisted for up to 14 days. Markers of MesoMT were increased in the visceral pleura of S. pneumoniae infected mice. KC, IL-17A, MIP-1ß, MCP-1, PGE2 and plasmin activity were increased in pleural lavage of infected mice at 7 days. PAI-1(-/-) mice died within 4 days, had increased pleural inflammation and higher PGE2 levels than WT mice. PGE2 was induced in primary PMCs by uPA and plasmin and induced markers of MesoMT. CONCLUSION: To our knowledge, this is the first murine model of subacute, organizing empyema. The model can be used to identify factors that, like PAI-1 deficiency, alter outcomes and dissect their contribution to pleural organization, rind formation and lung restriction.

4.
Am J Physiol Lung Cell Mol Physiol ; 311(2): L389-99, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27343192

RESUMEN

The incidence of empyema (EMP) is increasing worldwide; EMP generally occurs with pleural loculation and impaired drainage is often treated with intrapleural fibrinolytic therapy (IPFT) or surgery. A number of IPFT options are used clinically with empiric dosing and variable outcomes in adults. To evaluate mechanisms governing intrapleural fibrinolysis and disease outcomes, models of Pasteurella multocida and Streptococcus pneumoniae were generated in rabbits and the animals were treated with either human tissue (tPA) plasminogen activator or prourokinase (scuPA). Rabbit EMP was characterized by the development of pleural adhesions detectable by chest ultrasonography and fibrinous coating of the pleura. Similar to human EMP, rabbits with EMP accumulated sizable, 20- to 40-ml fibrinopurulent pleural effusions associated with extensive intrapleural organization, significantly increased pleural thickness, suppression of fibrinolytic and plasminogen-activating activities, and accumulation of high levels of plasminogen activator inhibitor 1, plasminogen, and extracellular DNA. IPFT with tPA (0.145 mg/kg) or scuPA (0.5 mg/kg) was ineffective in rabbit EMP (n = 9 and 3 for P. multocida and S. pneumoniae, respectively); 2 mg/kg tPA or scuPA IPFT (n = 5) effectively cleared S. pneumoniae-induced EMP collections in 24 h with no bleeding observed. Although intrapleural fibrinolytic activity for up to 40 min after IPFT was similar for effective and ineffective doses of fibrinolysin, it was lower for tPA than for scuPA treatments. These results demonstrate similarities between rabbit and human EMP, the importance of pleural fluid PAI-1 activity, and levels of plasminogen in the regulation of intrapleural fibrinolysis and illustrate the dose dependency of IPFT outcomes in EMP.


Asunto(s)
Empiema Pleural/tratamiento farmacológico , Fibrinolíticos/administración & dosificación , Infecciones por Pasteurella/tratamiento farmacológico , Infecciones Neumocócicas/tratamiento farmacológico , Terapia Trombolítica , Activador de Tejido Plasminógeno/administración & dosificación , Activador de Plasminógeno de Tipo Uroquinasa/administración & dosificación , Animales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Empiema Pleural/diagnóstico por imagen , Empiema Pleural/microbiología , Femenino , Humanos , Infecciones por Pasteurella/microbiología , Pasteurella multocida/fisiología , Pleura/diagnóstico por imagen , Pleura/microbiología , Pleura/patología , Infecciones Neumocócicas/microbiología , Conejos , Proteínas Recombinantes/administración & dosificación , Streptococcus pneumoniae/fisiología
5.
Am J Physiol Lung Cell Mol Physiol ; 308(12): L1265-73, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25888576

RESUMEN

Pleural organization follows acute injury and is characterized by pleural fibrosis, which may involve the visceral and parietal pleural surfaces. This process affects patients with complicated parapneumonic pleural effusions, empyema, and other pleural diseases prone to pleural fibrosis and loculation. Pleural mesothelial cells (PMCs) undergo a process called mesothelial mesenchymal transition (MesoMT), by which PMCs acquire a profibrotic phenotype characterized by cellular enlargement and elongation, increased expression of α-smooth muscle actin (α-SMA), and matrix proteins including collagen-1. Although MesoMT contributes to pleural fibrosis and lung restriction in mice with carbon black/bleomycin-induced pleural injury and procoagulants and fibrinolytic proteases strongly induce MesoMT in vitro, the mechanism by which this transition occurs remains unclear. We found that thrombin and plasmin potently induce MesoMT in vitro as does TGF-ß. Furthermore, these mediators of MesoMT activate phosphatidylinositol-3-kinase (PI3K)/Akt and NF-κB signaling pathways. Inhibition of PI3K/Akt signaling prevented TGF-ß-, thrombin-, and plasmin-mediated induction of the MesoMT phenotype exhibited by primary human PMCs. Similar effects were demonstrated through blockade of the NF-κB signaling cascade using two distinctly different NF-κB inhibitors, SN50 and Bay-11 7085. Conversely, expression of constitutively active Akt-induced mesenchymal transition in human PMCs whereas the process was blocked by PX866 and AKT8. Furthermore, thrombin-mediated MesoMT is dependent on PAR-1 expression, which is linked to PI3K/Akt signaling downstream. These are the first studies to demonstrate that PI3K/Akt and/or NF-κB signaling is critical for induction of MesoMT.


Asunto(s)
Células Epiteliales/metabolismo , Mesodermo/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Pleura/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Western Blotting , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Fibrinolisina/farmacología , Fibrinolíticos/farmacología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Hemostáticos/farmacología , Humanos , Técnicas para Inmunoenzimas , Mesodermo/citología , Mesodermo/efectos de los fármacos , Ratones , Pleura/citología , Pleura/efectos de los fármacos , Trombina/farmacología , Factor de Crecimiento Transformador beta/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA