RESUMEN
In response to heightened environmental awareness, various industries, including the civil and automotive sector, are contemplating a shift towards the utilization of more sustainable materials. For adhesive bonding, this necessitates the exploration of materials derived from renewable sources, commonly denoted as bio-adhesives. This study focuses on a bio-adhesive L-joint, which is a commonly employed configuration in the automotive sector for creating bonded structural components with significant bending stiffness. In this investigation, the behavior of joints composed of pine wood and bio-based adhesives was studied. Two distinct configurations were studied, differing solely in the fiber orientation of the wood. The research combined experimental testing and finite element modeling to analyze the strength of the joints and determine their failure mode when subjected to tensile loading conditions. The findings indicate that the configuration of the joint plays a crucial role in its overall performance, with one of the solutions demonstrating higher strength. Additionally, a good degree of agreement was observed between the experimental and numerical analyses for one of the configurations, while the consideration of the maximum principal stress failure predictor (MPSFP) proved to accurately predict the location for crack propagation in both configurations.
RESUMEN
In contemporary engineering practices, the utilization of sustainable materials and eco-friendly techniques has gained significant importance. Wooden joints, particularly those created with polyurethan-based bio-adhesives, have garnered significant attention owing to their intrinsic environmental advantages and desirable mechanical properties. In comparison to conventional joining methods, adhesive joints offer distinct benefits such as an enhanced load distribution, reduced stress concentration, and improved aesthetic appeal. In this study, reference and toughened single-lap joint samples were investigated experimentally and numerically under quasi-static loading conditions. The proposed research methodology involves the infusion of a bio-adhesive into the wooden substrate, reinforcing the matrix of its surfaces. This innovative approach was developed to explore a synergetic effect of both wood and bio-adhesive. The experimentally validated results showcase a significant enhancement in joint strength, demonstrating an 85% increase when compared to joints with regular pine substrates. Moreover, the increased delamination thickness observed in toughened joints was found to increase the energy absorption of the joint.
RESUMEN
This study investigates a sustainable alternative for composites and adhesives in high-performance industries like civil and automotive. This study pioneers the development and application of a new methodology to characterize a bio-based, zero-thickness adhesive. This method facilitates precise measurements of the adhesive's strength and fracture properties under zero-thickness conditions. The research also encompasses the characterization of densified pine wood, an innovative wood product distinguished by enhanced mechanical properties, which is subsequently compared to natural pine wood. We conducted a comprehensive characterization of wood's strength properties, utilizing dogbone-shaped samples in the fiber direction, and block specimens in the transverse direction. Butt joints were employed for adhesive testing. Mode I fracture properties were determined via compact tension (CT) and double cantilever beam (DCB) tests for wood and adhesive, respectively, while mode II response was assessed through end-loaded split (ELS) tests. The densification procedure, encompassing chemical and mechanical processes, was a focal point of the study. Initially, wood was subjected to acid boiling to remove the wood matrix, followed by the application of pressure to enhance density. As a result, wood density increased by approximately 100 percent, accompanied by substantial improvements in strength and fracture energy along the fiber direction by about 120 percent. However, it is worth noting that due to the delignification nature of the densification method, properties in the transverse direction, mainly reliant on the lignin matrix, exhibited compromises. Also introduced was an innovative technique to evaluate the bio-based adhesive, applied as a zero-thickness layer. The results from this method reveal promising mechanical properties, highlighting the bio-based adhesive's potential as an eco-friendly substitute for synthetic adhesives in the wood industry.
RESUMEN
The investigation of the behaviour of adhesive joints under high strain rates is an active area of research, primarily due to the widespread use of adhesives in various industries, including automotive manufacturing. Understanding how adhesives perform when subjected to high strain rates is crucial for designing vehicle structures. Additionally, it is particularly important to comprehend the behaviour of adhesive joints when exposed to elevated temperatures. Therefore, this study aims to analyse the impact of strain rate and temperature on the mixed-mode fracture characteristics of a polyurethane adhesive. To achieve this, mixed-mode bending tests were conducted on test specimens. These specimens were subjected to three different strain rates (0.2 mm/min, 200 mm/min, and 6000 mm/min) and tested at temperatures ranging from -30 °C to 60 °C. The crack size was measured using a compliance-based method during the tests. For temperatures above Tg, the maximum load supported by the specimen increased with an increasing loading rate. GI increased by a factor of 35 for an intermediate strain rate and 38 for a high strain rate from low temperature (-30 °C) to room temperature (23 °C). GII also increased for the same conditions by a factor of 25 and 95 times, respectively.
RESUMEN
Although the shipbuilding industry is constantly demanding new advanced joining solutions, adhesive technology is not as developed in the marine as compared to other industries. The main reason is the lack of specific knowledge that guarantees the durability of the bonded joints in optimal conditions during the life cycle of a ship. This work simulates in the laboratory a marine-like environment by immersing an adhesive in seawater and subjecting it to constant loading. The objective is to characterize the seawater absorption behavior and its consequences on the mechanical, thermal, and chemical properties of the adhesive after this aging process. Seawater ingress was determined through gravimetric tests at several load conditions of the tensile strength of the adhesive. Besides, absorption process was studied using Fick's Law, determining the diffusion coefficients. The thermal behavior was monitored with differential scanning calorimetry (DSC) and the chemical degradation was analyzed using Fourier transform infrared spectroscopy (FTIR). Also, the mechanical properties were determined by tensile tests. The surface of the adhesive (dried) was studied by Scanning Electron Microscopy (SEM) technique and the porosity was measured by physisorption with a high-performance adsorption analyzer. A numerical simulation was developed using Darcy's Law combined with continuity equation. The results show that application of loads and immersion in seawater until full saturation of seawater improve the mechanical properties of the adhesive, but it affects negatively to the glass transition temperature. This should be considered when designing adhesive bonding joints on ships.
RESUMEN
The aim of this work is to analyze the difference between silicone/composite and silicone/metal interphases, both in terms of water diffusion behavior and failure of the aged joints. For that, silicone joints with two different suhbstrates were prepared. The substrates were polybutylene terephthalate with 30% of short glass fiber (PBT-GF30) and 6082-T6 aluminum. It is assumed that the water uptake of the joints is equal to the water uptake of the substrate, adhesive, and interphase. Therefore, knowing the first three, the last could be isolated. To study the water diffusion behavior of the complete joint, rectangular joints were prepared, immersed in water and their water uptake was measured. The water immersion was conducted at 70 °C. It was concluded that the aluminum/silicone joints absorbed more water through the interphase region than the PBT-GF30/silicone joints, since the difference between the expected water uptake and the experimentally measured mass gain is significantly higher, causing adhesive failure of the joint. The same was not observed in the PBT-GF30/silicone, with a more stable interphase, that does not absorb measurable quantities of water and always exhibits cohesive failure.
RESUMEN
The automotive industry, driven by the desire to decrease the environmental impact of vehicles, is permanently seeking to develop lightweight structural components, which lead to lower gas emissions and energy consumption, reducing their carbon footprint. In parallel, adopting innovative, constructive solutions, which dispense non-recyclable and energy-intensive materials, can increase the footprint reduction. Thus, an increase in the use of renewable materials for structural applications, including wood and its by-products, has been observed over the last few decades. Furthermore, composite materials are often joined by using petroleum-based synthetic adhesives, which should be progressively replaced by eco-friendly bio-adhesives. In this study, novel densified wood and wood/cork composites, joined with a bio-adhesive, are proposed and characterised. The densification of the wood aims to enhance the mechanical properties of the natural material, with the purpose of improving the energy absorption of the wood/bio-adhesive joint. To mitigate delamination and the brittle behaviour of wood/cork agglomerates were introduced between the wood substrate and the bio-adhesive. Different configurations of single lap joints (SLJ) were manufactured to study the effect of the overlap length and loading rate on the performance of the joints, both in terms of failure load and energy absorption. Afterward, the joints were numerically simulated. The densification process was successful, although it represents an additional challenge in terms of surface flatness, because the bio-adhesive requires zero bondline thickness. The increase of the overlap had a positive impact on the energy absorption of the joint, and the addition of cork resulted in a more consistent failure mode and higher strain to failure. The numerical models developed had a good correlation with the experimental results.
RESUMEN
The punishment-imposed abstinence procedure models the self-imposed abstinence that humans initiate due to the adverse consequences associated with drug-taking. This model has been implemented in experiments using different types of substances of abuse such as methamphetamine, cocaine, and alcohol. However, punishment-induced abstinence in heroin-trained animals has not been demonstrated. Furthermore, acute stress is a key trigger for relapse in humans and animal models. It was previously demonstrated that acute food deprivation robustly induced reinstatement of extinguished cocaine and heroin seeking. The procedure described here can be used to assess the effects of acute stress exposure on heroin seeking after punishment-imposed abstinence. A total of 8 rats were implanted with chronic intravenous (i.v.) catheters and trained to self-administer heroin (0.1 mg/kg/infusion) for 18 days under a seek-take chained schedule. Completing the seek link gave access to the take lever, which was paired with a heroin infusion. The seek lever was programmed with a variable interval 60 schedule of reinforcement (VI60), and the take lever was programmed with a fixed-ratio 1 reinforcement schedule (FR1). Following self-administration training, a mild foot shock was delivered on 30% of the completed seek links instead of the extension of the take lever. Footshock intensity was increased by 0.1 mA per daily session from 0.2 mA to 1.0 mA. Heroin-seeking tests were performed after 24 h of food deprivation (FD) or sated conditions. Rats under acute food deprivation condition robustly increased heroin seeking after punishment-imposed abstinence.
Asunto(s)
Cocaína , Dependencia de Heroína , Animales , Extinción Psicológica , Heroína/farmacología , Castigo , Ratas , Recurrencia , AutoadministraciónRESUMEN
Over recent decades, the need to comply with environmental standards has become a concern in many industrial sectors. As a result, manufacturers have increased their use of eco-friendly, recycled, recyclable, and, overall, more sustainable materials and industrial techniques. One technique highly dependent on petroleum-based products, and at the edge of a paradigm change, is adhesive bonding. Adhesive bonding is often used to join composite materials and depends upon an adhesive to achieve the connection. However, the matrices of the composite materials and the adhesives used, as well as, in some cases, the composite fibres, are manufactured from petrochemical products. Efforts to use natural composites and adhesives are therefore ongoing. One composite that has proven to be promising is wood due to its high strength and stiffness (particularly when it is densified), formability, and durability. However, wood must be very carefully characterised since its properties can be variable, depending on the slope of the grains, irregularities (such as knots, shakes, or splits), and on the location and climate of each individual tree. Therefore, in addition to neat wood, wood composites may also be a promising option to increase sustainability, with more predictable properties. To bond wood or wooden composite substrates, bio-adhesives can be considered. These adhesives are now formulated with increasingly enhanced mechanical properties and are becoming promising alternatives at the structural application level. In this paper, wooden adhesive joints are surveyed considering bio-adhesives and wood-based substrates, taking into consideration the recent approaches to improve these base materials, accurately characterise them, and implement them in adhesive joints.
RESUMEN
BACKGROUND: Maraviroc is an antiretroviral agent and C-C chemokine coreceptor 5 (CCR5) antagonist that is currently used to treat human immunodeficiency virus. CCR5/µ-opioid receptor heterodimerization suggests that maraviroc could be a treatment for oxycodone abuse. We treated rats with maraviroc to explore its effect on oxycodone-seeking and its interference with the analgesic effects of oxycodone. We used resting-state blood-oxygen-level-dependent functional connectivity to assess the effect of maraviroc on oxycodone-enhanced coupling in the reward circuitry and performed behavioural tests to evaluate the effect of maraviroc on oxycodone rewarding properties and on oxycodone-seeking after prolonged abstinence. METHODS: Two groups of rats were exposed to 8 consecutive days of oxycodone-conditioned place preference training and treatment with maraviroc or vehicle. Two additional groups were trained to self-administer oxycodone for 10 days and then tested for drug seeking after 14 days of abstinence with or without daily maraviroc treatment. We tested the effects of maraviroc on oxycodone analgesia using a tail-flick assay. We analyzed resting-state functional connectivity data using a rat 3-dimensional MRI atlas of 171 brain areas. RESULTS: Maraviroc significantly decreased conditioned place preference and attenuated oxycodone-seeking behaviour after prolonged abstinence. The analgesic effect of oxycodone was maintained after maraviroc treatment. Oxycodone increased functional coupling with the accumbens, ventral pallidum and olfactory tubercles, but this was reduced with maraviroc treatment. LIMITATIONS: All experiments were performed in male rats only. CONCLUSION: Maraviroc treatment attenuated oxycodone-seeking in abstinent rats and reduced functional coupling in the reward circuitry. The analgesic effects of oxycodone were not affected by maraviroc.
Asunto(s)
Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Conducta Animal/efectos de los fármacos , Maraviroc/farmacología , Maraviroc/uso terapéutico , Trastornos Relacionados con Opioides/tratamiento farmacológico , Oxicodona/efectos adversos , Analgésicos Opioides/efectos adversos , Animales , Imagen por Resonancia Magnética , Masculino , RatasRESUMEN
Short fiber reinforced polymers are widely used in the construction of electronic housings, where they are often exposed to harsh environmental conditions. The main purpose of this work is the in-depth study and characterization of the water uptake behavior of PBT-GF30 (polybutylene terephthalate with 30% of short glass fiber)as well as its consequent effect on the mechanical properties of the material. Further analysis was conducted to determine at which temperature range PBT-GF30 starts experiencing chemical changes. The influence of testing procedures and conditions on the evaluation of these effects was analyzed, also drawing comparisons with previous studies. The water absorption behavior was studied through gravimetric tests at 35, 70, and 130 °C. Fiber-free PBT was also studied at 35 °C for comparison purposes. The effect of water and temperature on the mechanical properties was analyzed through bulk tensile tests. The material was tested for the three temperatures in the as-supplied state (without drying or aging). Afterwards, PBT-GF30 was tested at room temperature following water immersion at the three temperatures. Chemical changes in the material were also analyzed through Fourier-transform infrared spectroscopy (FTIR). It was concluded that the water diffusion behavior is Fickian and that PBT absorbs more water than PBT-GF30 but at a slightly higher rate. However, temperature was found to have a more significant influence on the rate of water diffusion of PBT-GF30 than fiber content did. Temperature has a significant influence on the mechanical properties of the material. Humidity contributes to a slight drop in stiffness and strength, not showing a clear dependence on water uptake. This decrease in mechanical properties occurs due to the relaxation of the polymeric chain promoted by water ingress. Between 80 and 85 °C, after water immersion, the FTIR profile of the material changes, which suggests chemical changes in the PBT. The water absorption was simulated through heat transfer analogy with good results. From the developed numerical simulation, the minimum plate size to maintain the water ingress unidirectional was 30 mm, which was validated experimentally.
RESUMEN
BACKGROUND: Relapses in Multiple Sclerosis (MS) are often associated with significant disability impairment which is resultant from poor response to corticosteroids. In such severe cases, plasma exchange (PLEX) may be used, although only a few studies with MS patients have been reported. Our objective was to evaluate the effectiveness of PLEX in severe relapses of MS. METHODS: Retrospective study of MS patients treated with PLEX in acute relapses. Data regarding EDSS, annualized relapse rate (ARR), treatment with corticosteroids, number of PLEX sessions, adverse events, and gadolinium enhancement in brain MRI were analysed. RESULTS: Included 46 patients, 76.09% female (n = 35) with mean age of 38.76 years and mean disease duration of 5.99 years, of which 84.78% had a Relapsing Remitting MS (n = 39), 15.22% Secondary Progressive MS (n = 7). The previous ARR was 1.1 and in 28.26% of the cases (n = 13) PLEX was used in the relapse that led to MS diagnosis. The majority of relapses had motor impairment (69.6%, n = 32), with a median EDSS increase of 1.5 points from baseline (maximum of 6.5) and higher than 1.5 points in 45.65% of cases (n = 21). Brain MRI was available in 69.57% of the cases (n = 32), and gadolinium enhancing lesions were present in 68.75% of cases (n = 22). Corticosteroids were used before PLEX in all patients for a mean of 6.09 days, without any immediate benefit in 41.30% of cases (n = 19), with the remaining cases showing only mild disability recovery. After a mean of 7.39 PLEX sessions, there was clinical benefit with complete EDSS recovery in 41.30% of patients (n = 19), and partial in 39.13% (n = 18). There were no adverse events related to PLEX in 89.13% of patients (n = 41) and in the remaining patients the reported adverse events included deep venous thrombosis (n = 1), anaemia (n = 1), fever (n = 1), hypoalbuminemia (n = 1) and arterial hypotension (n = 1). CONCLUSION: Our results support the use of PLEX in severe relapses unresponsive to corticosteroids, since it was an effective and relatively safe treatment for most of our patients.
Asunto(s)
Corticoesteroides/farmacología , Esclerosis Múltiple Crónica Progresiva/terapia , Esclerosis Múltiple Recurrente-Remitente/terapia , Evaluación de Resultado en la Atención de Salud , Intercambio Plasmático/métodos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Esclerosis Múltiple Crónica Progresiva/fisiopatología , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/fisiopatología , Intercambio Plasmático/efectos adversos , Portugal , Recurrencia , Estudios RetrospectivosRESUMEN
BACKGROUND: A 31-year-old woman presented with a 5-year history of painful ulcerations, palpable purpura, porcelain-white atrophic scars of the malleolar region and dorsal aspect of the feet, livedo reticularis on the limbs, arthralgia, xerophthalmia, and xerostomia. METHODS: Skin biopsy revealed vessel wall hyalinization and thrombosis of the microvasculature with a very scarce dermal inflammatory infiltrate. Biopsy of the oral mucosa showed mononuclear infiltration of an intralobular duct of a salivary gland. RESULTS: Laboratory studies, including autoantibodies and inflammation markers, were normal, except for a positive rheumatoid factor. Coagulation screening revealed C677T methylenetetrahydrofolate reductase (MTHFR) mutation, with a normal serum homocysteine. The patient was treated with oral methylprednisolone (32 mg/day with progressive reduction) and enoxaparin (20 mg/day subcutaneously), with complete ulcer healing within 4 months. CONCLUSION: Livedoid vasculitis or vasculopathy has not been referred to previously in association with Sjögren's syndrome, but may be associated with other autoimmune disorders and anomalies of coagulation, namely factor V Leiden mutation, protein C deficiency, and MTHFR mutation, associated or not with hyperhomocysteinemia, a condition that seems to confer an increased risk of recurrent arterial and venous thrombosis. We stress the importance of anticoagulant therapy for ulcer healing and for the prevention of other thrombotic events.