Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Plant Direct ; 8(7): e620, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38962173

RESUMEN

Wheat (Triticum aestivum L.) is an important source of both calories and protein in global diets, but there is a trade-off between grain yield and protein content. The timing of leaf senescence could mediate this trade-off as it is associated with both declines in photosynthesis and nitrogen remobilization from leaves to grain. NAC transcription factors play key roles in regulating senescence timing. In rice, OsNAC5 expression is correlated with increased protein content and upregulated in senescing leaves, but the role of the wheat ortholog in senescence had not been characterized. We verified that NAC5-1 is the ortholog of OsNAC5 and that it is expressed in senescing flag leaves in wheat. To characterize NAC5-1, we combined missense mutations in NAC5-A1 and NAC5-B1 from a TILLING mutant population and overexpressed NAC5-A1 in wheat. Mutation in NAC5-1 was associated with delayed onset of flag leaf senescence, while overexpression of NAC5-A1 was associated with slightly earlier onset of leaf senescence. DAP-seq was performed to locate transcription factor binding sites of NAC5-1. Analysis of DAP-seq and comparison with other studies identified putative downstream target genes of NAC5-1 which could be associated with senescence. This work showed that NAC5-1 is a positive transcriptional regulator of leaf senescence in wheat. Further research is needed to test the effect of NAC5-1 on yield and protein content in field trials, to assess the potential to exploit this senescence regulator to develop high-yielding wheat while maintaining grain protein content.

2.
G3 (Bethesda) ; 13(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36226803

RESUMEN

Senescence enables the remobilization of nitrogen and micronutrients from vegetative tissues of wheat (Triticum aestivum L.) into the grain. Understanding the molecular players in this process will enable the breeding of wheat lines with tailored grain nutrient content. The NAC transcription factor NAM-B1 is associated with earlier senescence and higher levels of grain protein, iron, and zinc contents due to increased nutrient remobilization. To investigate how related NAM genes control nitrogen remobilization at the molecular level, we carried out a comparative transcriptomic study using flag leaves at 7 time points (3, 7, 10, 13, 15, 19, and 26 days after anthesis) in wild type and NAM RNA interference lines with reduced NAM gene expression. Approximately 2.5 times more genes were differentially expressed in wild type than NAM RNA interference plants during this early senescence time course (6,508 vs 2,605 genes). In both genotypes, differentially expressed genes were enriched for gene ontology terms related to photosynthesis, hormones, amino acid transport, and nitrogen metabolism. However, nitrogen metabolism genes including glutamine synthetase (GS1 and GS2), glutamate decarboxylase (GAD), glutamate dehydrogenase (GDH), and asparagine synthetase (ASN1) showed stronger or earlier differential expression in wild-type than in NAM RNA interference plants, consistent with higher nitrogen remobilization. The use of time course data identified the dynamics of NAM-regulated and NAM-independent gene expression changes during senescence and provides an entry point to functionally characterize the pathways regulating senescence and nutrient remobilization in wheat.


Asunto(s)
Nitrógeno , Triticum , Triticum/fisiología , Nitrógeno/metabolismo , Fitomejoramiento , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Grano Comestible/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Proc Natl Acad Sci U S A ; 119(48): e2209875119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36417432

RESUMEN

Semidwarfing genes have greatly increased wheat yields globally, yet the widely used gibberellin (GA)-insensitive genes Rht-B1b and Rht-D1b have disadvantages for seedling emergence. Use of the GA-sensitive semidwarfing gene Rht13 avoids this pleiotropic effect. Here, we show that Rht13 encodes a nucleotide-binding site/leucine-rich repeat (NB-LRR) gene. A point mutation in the semidwarf Rht-B13b allele autoactivates the NB-LRR gene and causes a height reduction comparable with Rht-B1b and Rht-D1b in diverse genetic backgrounds. The autoactive Rht-B13b allele leads to transcriptional up-regulation of pathogenesis-related genes including class III peroxidases associated with cell wall remodeling. Rht13 represents a new class of reduced height (Rht) gene, unlike other Rht genes, which encode components of the GA signaling or metabolic pathways. This discovery opens avenues to use autoactive NB-LRR genes as semidwarfing genes in a range of crop species, and to apply Rht13 in wheat breeding programs using a perfect genetic marker.


Asunto(s)
Enanismo , Triticum , Triticum/genética , Triticum/metabolismo , Nucleótidos/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sitios de Unión
4.
G3 (Bethesda) ; 12(8)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35748743

RESUMEN

Whole-genome duplication is widespread in plant evolutionary history and is followed by nonrandom gene loss to return to a diploid state. Across multiple angiosperm species, the retained genes tend to be dosage-sensitive regulatory genes such as transcription factors, yet data for younger polyploid species is sparse. Here, we analyzed the retention, expression, and genetic variation in transcription factors in the recent allohexaploid bread wheat (Triticum aestivum L.). By comparing diploid, tetraploid, and hexaploid wheat, we found that, following each of two hybridization and whole-genome duplication events, the proportion of transcription factors in the genome increased. Transcription factors were preferentially retained over other genes as homoeologous groups in tetraploid and hexaploid wheat. Across cultivars, transcription factor homoeologs contained fewer deleterious missense mutations than nontranscription factors, suggesting that transcription factors are maintained as three functional homoeologs in hexaploid wheat populations. Transcription factor homoeologs were more strongly coexpressed than nontranscription factors, indicating conservation of function between homoeologs. We found that the B3, MADS-M-type, and NAC transcription factor families were less likely to have three homoeologs present than other families, which was associated with low expression levels and high levels of tandem duplication. Together, our results show that transcription factors are preferentially retained in polyploid wheat genomes although there is variation between families. Knocking out one transcription factor homoeolog to alter gene dosage, using TILLING or CRISPR, could generate new phenotypes for wheat breeding.


Asunto(s)
Factores de Transcripción , Triticum , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Fitomejoramiento , Poliploidía , Tetraploidía , Factores de Transcripción/genética , Triticum/genética
5.
Proc Natl Acad Sci U S A ; 119(16): e2123299119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35412884

RESUMEN

Wheat is a widely grown food crop that suffers major yield losses due to attack by pests and pathogens. A better understanding of biotic stress responses in wheat is thus of major importance. The recently assembled bread wheat genome coupled with extensive transcriptomic resources provides unprecedented new opportunities to investigate responses to pathogen challenge. Here, we analyze gene coexpression networks to identify modules showing consistent induction in response to pathogen exposure. Within the top pathogen-induced modules, we identify multiple clusters of physically adjacent genes that correspond to six pathogen-induced biosynthetic pathways that share a common regulatory network. Functional analysis reveals that these pathways, all of which are encoded by biosynthetic gene clusters, produce various different classes of compounds­namely, flavonoids, diterpenes, and triterpenes, including the defense-related compound ellarinacin. Through comparative genomics, we also identify associations with the known rice phytoalexins momilactones, as well as with a defense-related gene cluster in the grass model plant Brachypodium distachyon. Our results significantly advance the understanding of chemical defenses in wheat and open up avenues for enhancing disease resistance in this agriculturally important crop. They also exemplify the power of transcriptional networks to discover the biosynthesis of chemical defenses in plants with large, complex genomes.


Asunto(s)
Vías Biosintéticas , Interacciones Huésped-Patógeno , Enfermedades de las Plantas , Triticum , Vías Biosintéticas/genética , Pan , Resistencia a la Enfermedad/genética , Familia de Multigenes/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/metabolismo , Triticum/microbiología
6.
Plant Methods ; 16: 137, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072173

RESUMEN

BACKGROUND: Functional characterisation of genes using transgenic methods is increasingly common in cereal crops. Yet standard methods of gene over-expression can lead to undesirable developmental phenotypes, or even embryo lethality, due to ectopic gene expression. Inducible expression systems allow the study of such genes by preventing their expression until treatment with the specific inducer. When combined with the Cre-Lox recombination system, inducible promoters can be used to initiate constitutive expression of a gene of interest. Yet while these systems are well established in dicot model plants, like Arabidopsis thaliana, they have not yet been implemented in grasses. RESULTS: Here we present an irreversible heat-shock inducible system developed using Golden Gate-compatible components which utilises Cre recombinase to drive constitutive gene expression in barley and wheat. We show that a heat shock treatment of 38 °C is sufficient to activate the construct and drive expression of the gene of interest. Modulating the duration of heat shock controls the density of induced cells. Short durations of heat shock cause activation of the construct in isolated single cells, while longer durations lead to global construct activation. The system can be successfully activated in multiple tissues and at multiple developmental stages and shows no activation at standard growth temperatures (~ 20 °C). CONCLUSIONS: This system provides an adaptable framework for use in gene functional characterisation in cereal crops. The developed vectors can be easily adapted for specific genes of interest within the Golden Gate cloning system. By using an environmental signal to induce activation of the construct, the system avoids pitfalls associated with consistent and complete application of chemical inducers. As with any inducible system, care must be taken to ensure that the expected construct activation has indeed taken place.

7.
J Exp Bot ; 71(22): 7171-7178, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-32949136

RESUMEN

The induced dwarf mutant Rht12 was previously shown to have agronomic potential to replace the conventional DELLA mutants Rht-B1b/Rht-D1b in wheat. The Rht12 dwarfing gene is not associated with reduced coleoptile length (unlike the DELLA mutants) and it is dominant, characteristics which are shared with the previously characterized dwarfing genes Rht18 and Rht14. Using the Rht18/Rht14 model, a gibberellin (GA) 2-oxidase gene was identified in the Rht12 region on chromosome 5A. A screen for suppressor mutants in the Rht12 background identified tall overgrowth individuals that were shown to contain loss-of-function mutations in GA2oxidaseA13, demonstrating the role of this gene in the Rht12 dwarf phenotype. It was concluded that Rht12, Rht18, and Rht14 share the same height-reducing mechanism through the increased expression of GA 2-oxidase genes. Some of the overgrowth mutants generated in this study were semi-dwarf and taller than the original Rht12 dwarf, providing breeders with new sources of agronomically useful dwarfism.


Asunto(s)
Enanismo , Giberelinas , Fenotipo , Proteínas de Plantas/genética , Triticum/genética
8.
Heredity (Edinb) ; 125(6): 386-395, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32528079

RESUMEN

Wheat has low levels of the micronutrients iron and zinc in the grain, which contributes to 2 billion people suffering from micronutrient deficiency globally. While wheat flour is commonly fortified during processing, an attractive and more sustainable solution is biofortification, which could improve micronutrient content in the human diet, without the sustainability issues and costs associated with conventional fortification. Although many studies have used quantitative trait loci mapping and genome-wide association to identify genetic loci to improve micronutrient contents, recent developments in genomics offer an opportunity to accelerate marker discovery and use gene-focussed approaches to engineer improved micronutrient content in wheat. The recent publication of a high-quality wheat genome sequence, alongside gene expression atlases, variation datasets and sequenced mutant populations, provides a foundation to identify genetic loci and genes controlling micronutrient content in wheat. We discuss how novel genomic resources can identify candidate genes for biofortification, integrating knowledge from other cereal crops, and how these genes can be tested using gene editing, transgenic and TILLING approaches. Finally, we highlight key challenges remaining to develop wheat cultivars with high levels of iron and zinc.


Asunto(s)
Biofortificación , Genómica , Triticum , Harina , Genoma de Planta , Triticum/genética
9.
J Cereal Sci ; 93: 102965, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32508376

RESUMEN

Mutations at the LYS3 locus in barley have multiple effects on grain development, including an increase in embryo size and a decrease in endosperm starch content. The gene underlying LYS3 was identified by genetic mapping and mutations in this gene were identified in all four barley lys3 alleles. LYS3 encodes a transcription factor called Prolamin Binding Factor (PBF). Its role in controlling embryo size was confirmed using wheat TILLING mutants. To understand how PBF controls embryo development, we studied its spatial and temporal patterns of expression in developing grains. The PBF gene is expressed in both the endosperm and the embryos, but the timing of expression in these organs differs. PBF expression in wild-type embryos precedes the onset of embryo enlargement in lys3 mutants, suggesting that PBF suppresses embryo growth. We predicted the down-stream target genes of PBF in wheat and found them to be involved in a wide range of biological processes, including organ development and starch metabolism. Our work suggests that PBF may influence embryo size and endosperm starch synthesis via separate gene control networks.

10.
Elife ; 92020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32208137

RESUMEN

Understanding the function of genes within staple crops will accelerate crop improvement by allowing targeted breeding approaches. Despite their importance, a lack of genomic information and resources has hindered the functional characterisation of genes in major crops. The recent release of high-quality reference sequences for these crops underpins a suite of genetic and genomic resources that support basic research and breeding. For wheat, these include gene model annotations, expression atlases and gene networks that provide information about putative function. Sequenced mutant populations, improved transformation protocols and structured natural populations provide rapid methods to study gene function directly. We highlight a case study exemplifying how to integrate these resources. This review provides a helpful guide for plant scientists, especially those expanding into crop research, to capitalise on the discoveries made in Arabidopsis and other plants. This will accelerate the improvement of crops of vital importance for food and nutrition security.


Asunto(s)
Arabidopsis/genética , Productos Agrícolas/genética , Genoma de Planta/genética , Triticum/genética , Genómica/métodos , Anotación de Secuencia Molecular/métodos , Fitomejoramiento/métodos , Poliploidía
11.
New Phytol ; 228(6): 1717-1718, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33459376
12.
New Phytol ; 228(6): 1721-1727, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31571228

RESUMEN

The cereal crops rice (Oryza sativa), maize (Zea mays ssp. mays) and wheat (Triticum aestivum) provide half of the food eaten by humankind. However, understanding their biology has proved challenging due to their large size, long lifecycle and large genomes. The model plant Arabidopsis thaliana avoids these practical problems and has provided fundamental understanding of plant biology, however not all of this knowledge is directly transferrable to cereals. Recent developments in gene editing, speed breeding and genome assembly techniques mean that the challenges associated with working with the major cereal crops can be overcome. Resources such as mutant collections and genome sequences are now available for these crops, making them attractive experimental systems with which to make discoveries that are directly applicable to increasing crop production.


Asunto(s)
Grano Comestible , Oryza , Productos Agrícolas/genética , Grano Comestible/genética , Genoma de Planta , Oryza/genética , Fitomejoramiento , Triticum/genética , Zea mays/genética
13.
Front Plant Sci ; 10: 1325, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681395

RESUMEN

Polyploidization has played an important role in plant evolution. However, upon polyploidization, the process of meiosis must adapt to ensure the proper segregation of increased numbers of chromosomes to produce balanced gametes. It has been suggested that meiotic gene (MG) duplicates return to a single copy following whole genome duplication to stabilize the polyploid genome. Therefore, upon the polyploidization of wheat, a hexaploid species with three related (homeologous) genomes, the stabilization process may have involved rapid changes in content and expression of MGs on homeologous chromosomes (homeologs). To examine this hypothesis, sets of candidate MGs were identified in wheat using co-expression network analysis and orthology informed approaches. In total, 130 RNA-Seq samples from a range of tissues including wheat meiotic anthers were used to define co-expressed modules of genes. Three modules were significantly correlated with meiotic tissue samples but not with other tissue types. These modules were enriched for GO terms related to cell cycle, DNA replication, and chromatin modification and contained orthologs of known MGs. Overall, 74.4% of genes within these meiosis-related modules had three homeologous copies which was similar to other tissue-related modules. Amongst wheat MGs identified by orthology, rather than co-expression, the majority (93.7%) were either retained in hexaploid wheat at the same number of copies (78.4%) or increased in copy number (15.3%) compared to ancestral wheat species. Furthermore, genes within meiosis-related modules showed more balanced expression levels between homeologs than genes in non-meiosis-related modules. Taken together, our results do not support extensive gene loss nor changes in homeolog expression of MGs upon wheat polyploidization. The construction of the MG co-expression network allowed identification of hub genes and provided key targets for future studies.

14.
BMC Plant Biol ; 19(1): 407, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31533618

RESUMEN

BACKGROUND: NAC transcription factors contain five highly conserved subdomains which are required for protein dimerisation and DNA binding. Few residues within these subdomains have been identified as essential for protein function, and fewer still have been shown to be of biological relevance in planta. Here we use a positive regulator of senescence in wheat, NAM-A1, to test the impact of missense mutations at specific, highly conserved residues of the NAC domain on protein function. RESULTS: We identified missense mutations in five highly conserved residues of the NAC domain of NAM-A1 in a tetraploid TILLING population. TILLING lines containing these mutations, alongside synonymous and non-conserved mutation controls, were grown under glasshouse conditions and scored for senescence. Four of the five mutations showed a significant and consistent delay in peduncle senescence but had no consistent effects on flag leaf senescence. All four mutant alleles with the delayed senescence phenotype also lost the ability to interact with the homoeolog NAM-B1 in a yeast two-hybrid assay. Two of these residues were previously shown to be involved in NAC domain function in Arabidopsis, suggesting conservation of residue function between species. Three of these four alleles led to an attenuated cell death response compared to wild-type NAM-A1 when transiently over-expressed in Nicotiana benthamiana. One of these mutations was further tested under field conditions, in which there was a significant and consistent delay in both peduncle and leaf senescence. CONCLUSIONS: We combined field and glasshouse studies of a series of mutant alleles with biochemical analyses to identify four residues of the NAC domain which are required for NAM-A1 function and protein interaction. We show that mutations in these residues lead to a gradient of phenotypes, raising the possibility of developing allelic series of mutations for traits of agronomic importance. We also show that mutations in NAM-A1 more severely impact peduncle senescence, compared to the more commonly studied flag leaf senescence, highlighting this as an area deserving of further study. The results from this integrated approach provide strong evidence that conserved residues within the functional domains of NAC transcription factors have biological significance in planta.


Asunto(s)
Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Triticum/fisiología , Envejecimiento , Alelos , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Unión Proteica , Técnicas del Sistema de Dos Híbridos
15.
Front Plant Sci ; 10: 963, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396255

RESUMEN

Durum wheat (Triticum turgidum) derives from a hybridization event approximately 400,000 years ago which led to the creation of an allotetraploid genome. The evolutionary recent origin of durum wheat means that its genome has not yet been fully diploidised. As a result, many of the genes present in the durum genome act in a redundant fashion, where loss-of-function mutations must be present in both gene copies to observe a phenotypic effect. Here, we use a novel set of induced variation within the cv. Kronos TILLING population to identify a locus controlling a dominant, environmentally dependent chlorosis phenotype. We carried out a forward screen of the sequenced cv. Kronos TILLING lines for senescence phenotypes and identified a line with a dominant early senescence and chlorosis phenotype. Mutant plants contained less chlorophyll throughout their development and displayed premature flag leaf senescence. A segregating population was classified into discrete phenotypic groups and subjected to bulked-segregant analysis using exome capture followed by next-generation sequencing. This allowed the identification of a single region on chromosome 3A, Yellow Early Senescence 1 (YES-1), which was associated with the mutant phenotype. While this phenotype was consistent across 4 years of field trials in the United Kingdom, the mutant phenotype was not observed when grown in Davis, CA (United States). To obtain further SNPs for fine-mapping, we isolated chromosome 3A using flow sorting and sequenced the entire chromosome. By mapping these reads against both the cv. Chinese Spring reference sequence and the cv. Kronos assembly, we could identify high-quality, novel EMS-induced SNPs in non-coding regions within YES-1 that were previously missed in the exome capture data. This allowed us to fine-map YES-1 to 4.3 Mb, containing 59 genes. Our study shows that populations containing induced variation can be sources of novel dominant variation in polyploid crop species, highlighting their importance in future genetic screens. We also demonstrate the value of using cultivar-specific genome assemblies alongside the gold-standard reference genomes particularly when working with non-coding regions of the genome. Further fine-mapping of the YES-1 locus will be pursued to identify the causal SNP underpinning this dominant, environmentally dependent phenotype.

16.
Plant Physiol ; 180(3): 1740-1755, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31064813

RESUMEN

Senescence is a tightly regulated developmental program coordinated by transcription factors. Identifying these transcription factors in crops will provide opportunities to tailor the senescence process to different environmental conditions and regulate the balance between yield and grain nutrient content. Here, we use ten time points of gene expression data along with gene network modeling to identify transcription factors regulating senescence in polyploid wheat (Triticum aestivum). We observe two main phases of transcriptional changes during senescence: early down-regulation of housekeeping functions and metabolic processes followed by up-regulation of transport and hormone-related genes. These two phases are largely conserved with Arabidopsis (Arabidopsis thaliana), although the individual genes underlying these changes are often not orthologous. We have identified transcription factor families associated with these early and later waves of differential expression. Using gene regulatory network modeling, we identified candidate transcription factors that may control senescence. Using independent, publicly available datasets, we found that the most highly ranked candidate genes in the network were enriched for senescence-related functions compared with all genes in the network. We validated the function of one of these candidate transcription factors in senescence using wheat chemically induced mutants. This study lays the groundwork to understand the transcription factors that regulate senescence in polyploid wheat and exemplifies the integration of time-series data with publicly available expression atlases and networks to identify candidate regulatory genes.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Factores de Transcripción/genética , Triticum/genética , Secuencia de Bases , Ontología de Genes , Mutación , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Poliploidía , Transporte de Proteínas/genética , Transducción de Señal/genética , Factores de Tiempo , Factores de Transcripción/metabolismo , Triticum/fisiología
17.
Plant J ; 97(1): 56-72, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30407665

RESUMEN

Improving traits in wheat has historically been challenging due to its large and polyploid genome, limited genetic diversity and in-field phenotyping constraints. However, within recent years many of these barriers have been lowered. The availability of a chromosome-level assembly of the wheat genome now facilitates a step-change in wheat genetics and provides a common platform for resources, including variation data, gene expression data and genetic markers. The development of sequenced mutant populations and gene-editing techniques now enables the rapid assessment of gene function in wheat directly. The ability to alter gene function in a targeted manner will unmask the effects of homoeolog redundancy and allow the hidden potential of this polyploid genome to be discovered. New techniques to identify and exploit the genetic diversity within wheat wild relatives now enable wheat breeders to take advantage of these additional sources of variation to address challenges facing food production. Finally, advances in phenomics have unlocked rapid screening of populations for many traits of interest both in greenhouses and in the field. Looking forwards, integrating diverse data types, including genomic, epigenetic and phenomics data, will take advantage of big data approaches including machine learning to understand trait biology in wheat in unprecedented detail.


Asunto(s)
Genoma de Planta/genética , Genómica , Fenómica , Triticum/genética , Edición Génica , Marcadores Genéticos/genética , Fenotipo , Poliploidía
19.
Funct Integr Genomics ; 19(2): 295-309, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30446876

RESUMEN

Wheat can adapt to most agricultural conditions across temperate regions. This success is the result of phenotypic plasticity conferred by a large and complex genome composed of three homoeologous genomes (A, B, and D). Although drought is a major cause of yield and quality loss in wheat, the adaptive mechanisms and gene networks underlying drought responses in the field remain largely unknown. Here, we addressed this by utilizing an interdisciplinary approach involving field water status phenotyping, sampling, and gene expression analyses. Overall, changes at the transcriptional level were reflected in plant spectral traits amenable to field-level physiological measurements, although changes in photosynthesis-related pathways were found likely to be under more complex post-transcriptional control. Examining homoeologous genes with a 1:1:1 relationship across the A, B, and D genomes (triads), we revealed a complex genomic architecture for drought responses under field conditions, involving gene homoeolog specialization, multiple gene clusters, gene families, miRNAs, and transcription factors coordinating these responses. Our results provide a new focus for genomics-assisted breeding of drought-tolerant wheat cultivars.


Asunto(s)
Sequías , Genoma de Planta , Estrés Fisiológico , Triticum/genética , Fitomejoramiento/métodos , Sitios de Carácter Cuantitativo , Transcriptoma , Triticum/fisiología
20.
Front Plant Sci ; 9: 1791, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30564262

RESUMEN

Polyploidization is a fundamental process in plant evolution. One of the biggest challenges faced by a new polyploid is meiosis, particularly discriminating between multiple related chromosomes so that only homologous chromosomes synapse and recombine to ensure regular chromosome segregation and balanced gametes. Despite its large genome size, high DNA repetitive content and similarity between homoeologous chromosomes, hexaploid wheat completes meiosis in a shorter period than diploid species with a much smaller genome. Therefore, during wheat meiosis, mechanisms additional to the classical model based on DNA sequence homology, must facilitate more efficient homologous recognition. One such mechanism could involve exploitation of differences in chromosome structure between homologs and homoeologs at the onset of meiosis. In turn, these chromatin changes, can be expected to be linked to transcriptional gene activity. In this study, we present an extensive analysis of a large RNA-seq data derived from six different genotypes: wheat, wheat-rye hybrids and newly synthesized octoploid triticale, both in the presence and absence of the Ph1 locus. Plant material was collected at early prophase, at the transition leptotene-zygotene, when the telomere bouquet is forming and synapsis between homologs is beginning. The six genotypes exhibit different levels of synapsis and chromatin structure at this stage; therefore, recombination and consequently segregation, are also different. Unexpectedly, our study reveals that neither synapsis, whole genome duplication nor the absence of the Ph1 locus are associated with major changes in gene expression levels during early meiotic prophase. Overall wheat transcription at this meiotic stage is therefore highly resilient to such alterations, even in the presence of major chromatin structural changes. Further studies in wheat and other polyploid species will be required to reveal whether these observations are specific to wheat meiosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA