Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Biol Chem ; 300(6): 107300, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641066

RESUMEN

Integrin-mediated activation of the profibrotic mediator transforming growth factor-ß1 (TGF-ß1), plays a critical role in idiopathic pulmonary fibrosis (IPF) pathogenesis. Galectin-3 is believed to contribute to the pathological wound healing seen in IPF, although its mechanism of action is not precisely defined. We hypothesized that galectin-3 potentiates TGF-ß1 activation and/or signaling in the lung to promote fibrogenesis. We show that galectin-3 induces TGF-ß1 activation in human lung fibroblasts (HLFs) and specifically that extracellular galectin-3 promotes oleoyl-L-α-lysophosphatidic acid sodium salt-induced integrin-mediated TGF-ß1 activation. Surface plasmon resonance analysis confirmed that galectin-3 binds to αv integrins, αvß1, αvß5, and αvß6, and to the TGFßRII subunit in a glycosylation-dependent manner. This binding is heterogeneous and not a 1:1 binding stoichiometry. Binding interactions were blocked by small molecule inhibitors of galectin-3, which target the carbohydrate recognition domain. Galectin-3 binding to ß1 integrin was validated in vitro by coimmunoprecipitation in HLFs. Proximity ligation assays indicated that galectin-3 and ß1 integrin colocalize closely (≤40 nm) on the cell surface and that colocalization is increased by TGF-ß1 treatment and blocked by galectin-3 inhibitors. In the absence of TGF-ß1 stimulation, colocalization was detectable only in HLFs from IPF patients, suggesting the proteins are inherently more closely associated in the disease state. Galectin-3 inhibitor treatment of precision cut lung slices from IPF patients' reduced Col1a1, TIMP1, and hyaluronan secretion to a similar degree as TGF-ß type I receptor inhibitor. These data suggest that galectin-3 promotes TGF-ß1 signaling and may induce fibrogenesis by interacting directly with components of the TGF-ß1 signaling cascade.


Asunto(s)
Fibroblastos , Galectina 3 , Fibrosis Pulmonar Idiopática , Factor de Crecimiento Transformador beta1 , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Galectina 3/metabolismo , Galectina 3/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Pulmón/patología , Transducción de Señal , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Galectinas/metabolismo , Colágeno Tipo I/metabolismo , Células Cultivadas , Proteínas Sanguíneas
2.
Transplantation ; 107(10): 2179-2189, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37143202

RESUMEN

BACKGROUND: The association between interleukin-1ß (IL-1ß) concentrations during ex vivo lung perfusion (EVLP) with donor organ quality and post-lung transplant outcome has been demonstrated in several studies. The mechanism underlying IL-1ß-mediated donor lung injury was investigated using a paired single-lung EVLP model. METHODS: Human lung pairs were dissected into individual lungs and perfused on identical separate EVLP circuits, with one lung from each pair receiving a bolus of IL-1ß. Fluorescently labeled human neutrophils isolated from a healthy volunteer were infused into both circuits and quantified in perfusate at regular timepoints. Perfusates and tissues were subsequently analyzed, with perfusates also used in functional assays. RESULTS: Neutrophil numbers were significantly lower in perfusate samples collected from the IL-1ß-stimulated lungs consistent with increased neutrophil adhesion ( P = 0.042). Stimulated lungs gained significantly more weight than controls ( P = 0.046), which correlated with soluble intercellular adhesion molecule-1 (R 2 = 0.71, P = 0.0043) and von-Willebrand factor (R 2 = 0.39, P = 0.040) in perfusate. RNA expression patterns for inflammatory genes were differentially regulated via IL-1ß. Blockade of IL-1ß significantly reduced neutrophil adhesion in vitro ( P = 0.025). CONCLUSION: These data illustrate the proinflammatory functions of IL-1ß in the context of EVLP, suggesting this pathway may be susceptible to therapeutic modulation before transplantation.


Asunto(s)
Trasplante de Pulmón , Humanos , Perfusión/efectos adversos , Interleucina-1beta/farmacología , Interleucina-1beta/metabolismo , Trasplante de Pulmón/efectos adversos , Pulmón/metabolismo , Inflamación
3.
Sci Immunol ; 8(82): eadd8945, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37027478

RESUMEN

Macrophages are central orchestrators of the tissue response to injury, with distinct macrophage activation states playing key roles in fibrosis progression and resolution. Identifying key macrophage populations found in human fibrotic tissues could lead to new treatments for fibrosis. Here, we used human liver and lung single-cell RNA sequencing datasets to identify a subset of CD9+TREM2+ macrophages that express SPP1, GPNMB, FABP5, and CD63. In both human and murine hepatic and pulmonary fibrosis, these macrophages were enriched at the outside edges of scarring and adjacent to activated mesenchymal cells. Neutrophils expressing MMP9, which participates in the activation of TGF-ß1, and the type 3 cytokines GM-CSF and IL-17A coclustered with these macrophages. In vitro, GM-CSF, IL-17A, and TGF-ß1 drive the differentiation of human monocytes into macrophages expressing scar-associated markers. Such differentiated cells could degrade collagen IV but not collagen I and promote TGF-ß1-induced collagen I deposition by activated mesenchymal cells. In murine models blocking GM-CSF, IL-17A or TGF-ß1 reduced scar-associated macrophage expansion and hepatic or pulmonary fibrosis. Our work identifies a highly specific macrophage population to which we assign a profibrotic role across species and tissues. It further provides a strategy for unbiased discovery, triage, and preclinical validation of therapeutic targets based on this fibrogenic macrophage population.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Fibrosis Pulmonar , Humanos , Ratones , Animales , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Interleucina-17/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Cicatriz , Macrófagos/patología , Inflamación/patología , Proteínas de Unión a Ácidos Grasos/metabolismo , Glicoproteínas de Membrana , Receptores Inmunológicos
4.
Am J Pathol ; 193(4): 417-429, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36690076

RESUMEN

miRNAs are 22 nucleotides long and belong to a class of noncoding RNAs that plays an important role in regulating gene expression at a post-transcriptional level. Studies show aberrant levels of miRNAs to be associated with profibrotic processes in idiopathic pulmonary fibrosis (IPF). However, most of these studies used whole IPF tissue or in vitro monocultures in which fibrosis was artificially induced. The current study used laser microdissection to collect fibroblastic foci (FF), the key pathologic lesion in IPF, isolated miRNAs, and compared their expression levels with those found in whole IPF lung tissue and/or in vitro cultured fibroblast from IPF or normal lungs. Sequencing libraries were generated, and data generated were bioinformatically analyzed. A total of 18 miRNAs were significantly overexpressed in FF tissue when compared with whole IPF tissue. Of those, 15 were unique to FF. Comparison of FF with cultured IPF fibroblasts also revealed differences in miRNA composition that impacted several signaling pathways. The miRNA composition of FF is both overlapping and distinct from that of whole IPF tissue or cultured IPF fibroblasts and highlights the importance of characterizing FF biology as a phenotypically and functionally discrete tissue microenvironment.


Asunto(s)
Fibrosis Pulmonar Idiopática , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Pulmón/patología , Fibrosis Pulmonar Idiopática/metabolismo , Fibroblastos/metabolismo
5.
Am J Pathol ; 193(1): 11-26, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36243043

RESUMEN

Patients with cholestatic liver disease, including those with primary biliary cholangitis, can experience symptoms of impaired cognition or brain fog. This phenomenon remains unexplained and is currently untreatable. Bile duct ligation (BDL) is an established rodent model of cholestasis. In addition to liver changes, BDL animals develop cognitive symptoms early in the disease process (before development of cirrhosis and/or liver failure). The cellular mechanisms underpinning these cognitive symptoms are poorly understood. Herein, the study explored the neurocognitive symptom manifestations, and tested potential therapies, in BDL mice, and used human neuronal cell cultures to explore translatability to humans. BDL animals exhibited short-term memory loss and showed reduced astrocyte coverage of the blood-brain barrier, destabilized hippocampal network activity, and neuronal senescence. Ursodeoxycholic acid (first-line therapy for most human cholestatic diseases) did not reverse symptomatic or mechanistic aspects. In contrast, obeticholic acid (OCA), a farnesoid X receptor agonist and second-line anti-cholestatic agent, normalized memory function, suppressed blood-brain barrier changes, prevented hippocampal network deficits, and reversed neuronal senescence. Co-culture of human neuronal cells with either BDL or human cholestatic patient serum induced cellular senescence and increased mitochondrial respiration, changes that were limited again by OCA. These findings provide new insights into the mechanism of cognitive symptoms in BDL animals, suggesting that OCA therapy or farnesoid X receptor agonism could be used to limit cholestasis-induced neuronal senescence.


Asunto(s)
Colestasis , Memoria a Corto Plazo , Humanos , Ratones , Animales , Colestasis/tratamiento farmacológico , Ácido Quenodesoxicólico/farmacología , Conductos Biliares/cirugía , Hígado , Ligadura
6.
Front Med (Lausanne) ; 9: 741989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280870

RESUMEN

Background: Respiratory viral infections are closely associated with COPD exacerbations, hospitalisations, and significant morbidity and mortality. The consequences of the persisting inflammation and differentiation status in virus associated severe disease is not fully understood. The aim of this study was to evaluate barrier function, cellular architecture, the inflammatory response in severe COPD bronchial epithelium to human rhinovirus (HRV) induced pathological changes and innate immune responses. Methods: Well-differentiated primary bronchial epithelial cells (WD-PBECs) derived from severe COPD patients and age-matched healthy controls were cultured in the air-liquid interface (ALI) model. The differentiation phenotype, epithelial barrier integrity, pathological response and cytokine secreting profile of these cultures before and after HRV infection were investigated. Results: WD-PBECs derived from severe COPD patients showed aberrant epithelium differentiation with a decreased proportion of ciliated cells but increased numbers of club cells and goblet cells compared with healthy controls. Tight junction integrity was compromised in both cultures following HRV infection, with heightened disruptions in COPD cultures. HRV induced increased epithelial cell sloughing, apoptosis and mucus hypersecretion in COPD cultures compared with healthy controls. A Th1/Th2 imbalance and a strong interferon and pro-inflammatory cytokine response was also observed in COPD cultures, characterized by increased levels of IFNγ, IFNß, IP-10, IL-10 and decreased TSLP and IL-13 cytokine levels prior to HRV infection. Significantly enhanced basolateral secretion of eotaxin 3, IL-6, IL-8, GM-CSF were also observed in both mock and HRV infected COPD cultures compared with corresponding healthy controls. In response to HRV infection, all cultures displayed elevated levels of IFNλ1 (IL-29), IP-10 and TNFα compared with mock infected cultures. Interestingly, HRV infection dramatically reduced IFNλ levels in COPD cultures compared with healthy subjects. Conclusion: An altered differentiation phenotype and cytokine response as seen in severe COPD WD-PBECs may contribute to increased disease susceptibility and an enhanced inflammatory response to HRV infection.

7.
Liver Cancer ; 11(6): 540-557, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36589727

RESUMEN

Introduction: Heparin sulphate proteoglycans in the liver tumour microenvironment (TME) are key regulators of cell signalling, modulated by sulfatase-2 (SULF2). SULF2 overexpression occurs in hepatocellular carcinoma (HCC). Our aims were to define the nature and impact of SULF2 in the HCC TME. Methods: In liver biopsies from 60 patients with HCC, expression and localization of SULF2 were analysed associated with clinical parameters and outcome. Functional and mechanistic impacts were assessed with immunohistochemistry (IHC), in silico using The Cancer Genome Atlas (TGCA), in primary isolated cancer activated fibroblasts, in monocultures, in 3D spheroids, and in an independent cohort of 20 patients referred for sorafenib. IHC targets included αSMA, glypican-3, ß-catenin, RelA-P-ser536, CD4, CD8, CD66b, CD45, CD68, and CD163. SULF2 impact of peripheral blood mononuclear cells was assessed by migration assays, with characterization of immune cell phenotype using fluorescent activated cell sorting. Results: We report that while SULF2 was expressed in tumour cells in 15% (9/60) of cases, associated with advanced tumour stage and type 2 diabetes, SULF2 was more commonly expressed in cancer-associated fibroblasts (CAFs) (52%) and independently associated with shorter survival (7.2 vs. 29.2 months, p = 0.003). Stromal SULF2 modulated glypican-3/ß-catenin signalling in vitro, although in vivo associations suggested additional mechanisms underlying the CAF-SULF2 impact on prognosis. Stromal SULF2 was released by CAFS isolated from human HCC. It was induced by TGFß1, promoted HCC proliferation and sorafenib resistance, with CAF-SULF2 linked to TGFß1 and immune exhaustion in TGCA HCC patients. Autocrine activation of PDGFRß/STAT3 signalling was evident in stromal cells, with the release of the potent monocyte/macrophage chemoattractant CCL2 in vitro. In human PBMCs, SULF2 preferentially induced the migration of macrophage precursors (monocytes), inducing a phenotypic change consistent with immune exhaustion. In human HCC tissues, CAF-SULF2 was associated with increased macrophage recruitment, with tumouroid studies showing stromal-derived SULF2-induced paracrine activation of the IKKß/NF-κB pathway, tumour cell proliferation, invasion, and sorafenib resistance. Conclusion: SULF2 derived from CAFs modulates glypican-3/ß-catenin signalling but also the HCC immune TME, associated with tumour progression and therapy resistance via activation of the TAK1/IKKß/NF-κB pathway. It is an attractive target for combination therapies for patients with HCC.

8.
Clin Transplant ; 36(4): e14570, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34954872

RESUMEN

BACKGROUND: Transplantation is an effective treatment for end-stage lung disease, but the donor organ shortage is a major problem. Ex-vivo lung perfusion (EVLP) of extended criteria organs enables functional assessment to facilitate clinical decision-making around utilization, but the molecular processes occurring during EVLP, and how they differ between more or less viable lungs, remain to be determined. METHODS: We used RNA sequencing of lung tissue to delineate changes in gene expression occurring in 10 donor lungs undergoing EVLP and compare lungs that were deemed non-transplantable (n = 4) to those deemed transplantable (n = 6) following perfusion. RESULTS: We found that lungs deemed unsuitable for transplantation had increased induction of innate immune pathways and lower expression of oxidative phosphorylation related genes. Furthermore, the expression of SCGB1A1, a gene encoding an anti-inflammatory secretoglobin CC10, and other club cell genes was significantly decreased in non-transplantable lungs, while CHIT-1 was increased. Using a larger validation cohort (n = 17), we confirmed that the ratio of CHIT1 and SCGB1A1 protein levels in lung perfusate have potential utility to distinguish transplantable from non-transplantable lungs (AUC .81). CONCLUSIONS: Together, our data identify novel biomarkers that may assist with pre-transplant lung assessment, as well as pathways that may be amenable to therapeutic intervention during EVLPAQ6.


Asunto(s)
Trasplante de Pulmón , Biomarcadores/metabolismo , Humanos , Pulmón , Perfusión , Donantes de Tejidos
9.
Eur J Pharmacol ; 913: 174618, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34762934

RESUMEN

Fibrosis is the formation of scar tissue due to injury or long-term inflammation and is a leading cause of morbidity and mortality. Activation of the pro-fibrotic cytokine transforming growth factor-ß (TGFß) via the alpha-V beta-6 (αvß6) integrin has been identified as playing a key role in the development of fibrosis. Therefore, a drug discovery programme to identify an orally bioavailable small molecule αvß6 arginyl-glycinyl-aspartic acid (RGD)-mimetic was initiated. As part of a medicinal chemistry programme GSK3335103 was identified and profiled in a range of pre-clinical in vitro and in vivo systems. GSK3335103 was shown to bind to the αvß6 with high affinity and demonstrated fast binding kinetics. In primary human lung epithelial cells, GSK3335103-induced concentration- and time-dependent internalisation of αvß6 with a rapid return of integrin to the cell surface observed after washout. Following sustained engagement of the αvß6 integrin in vitro, lysosomal degradation was induced by GSK3335103. GSK3335103 was shown to engage with the αvß6 integrin and inhibit the activation of TGFß in both ex vivo IPF tissue and in a murine model of bleomycin-induced lung fibrosis, as measured by αvß6 engagement, TGFß signalling and collagen deposition, with a prolonged duration of action observed in vivo. In summary, GSK3335103 is a potent αvß6 inhibitor that attenuates TGFß signalling in vitro and in vivo with a well-defined pharmacokinetic/pharmacodynamic relationship. This translates to a significant reduction of collagen deposition in vivo and therefore GSK3335103 represents a potential novel oral therapy for fibrotic disorders.


Asunto(s)
Antifibróticos/farmacología , Integrinas/antagonistas & inhibidores , Fibrosis Pulmonar/tratamiento farmacológico , Administración Oral , Animales , Antifibróticos/química , Antifibróticos/uso terapéutico , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Disponibilidad Biológica , Bleomicina/administración & dosificación , Bleomicina/toxicidad , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Humanos , Integrinas/química , Integrinas/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Lisosomas/metabolismo , Masculino , Ratones , Oligopéptidos/química , Cultivo Primario de Células , Proteolisis/efectos de los fármacos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Factor de Crecimiento Transformador beta/metabolismo
10.
Cells ; 10(10)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34685744

RESUMEN

Pulmonary epithelial cells are widely considered to be the first line of defence in the lung and are responsible for coordinating the innate immune response to injury and subsequent repair. Consequently, epithelial cells communicate with multiple cell types including immune cells and fibroblasts to promote acute inflammation and normal wound healing in response to damage. However, aberrant epithelial cell death and damage are hallmarks of pulmonary disease, with necrotic cell death and cellular senescence contributing to disease pathogenesis in numerous respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and coronavirus disease (COVID)-19. In this review, we summarise the literature that demonstrates that epithelial damage plays a pivotal role in the dysregulation of the immune response leading to tissue destruction and abnormal remodelling in several chronic diseases. Specifically, we highlight the role of epithelial-derived damage-associated molecular patterns (DAMPs) and senescence in shaping the immune response and assess their contribution to inflammatory and fibrotic signalling pathways in the lung.


Asunto(s)
COVID-19/inmunología , Epitelio/inmunología , Fibrosis Pulmonar Idiopática/inmunología , Pulmón/inmunología , Alarminas , Animales , Senescencia Celular , Técnicas de Cocultivo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Fibrosis/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Inmunidad , Inflamación/metabolismo , Ligandos , Necroptosis , Necrosis/patología , Enfermedad Pulmonar Obstructiva Crónica , SARS-CoV-2 , Transducción de Señal
11.
Hepatology ; 74(6): 3441-3459, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34233024

RESUMEN

BACKGROUND AND AIMS: NAFLD is the most common hepatic pathology in western countries and no treatment is currently available. NAFLD is characterized by the aberrant hepatocellular accumulation of fatty acids in the form of lipid droplets (LDs). Recently, it was shown that liver LD degradation occurs through a process termed lipophagy, a form of autophagy. However, the molecular mechanisms governing liver lipophagy are elusive. Here, we aimed to ascertain the key molecular players that regulate hepatic lipophagy and their importance in NAFLD. APPROACH AND RESULTS: We analyzed the formation and degradation of LD in vitro (fibroblasts and primary mouse hepatocytes), in vivo and ex vivo (mouse and human liver slices) and focused on the role of the autophagy master regulator mammalian target of rapamycin complex (mTORC) 1 and the LD coating protein perilipin (Plin) 3 in these processes. We show that the autophagy machinery is recruited to the LD on hepatic overload of oleic acid in all experimental settings. This led to activation of lipophagy, a process that was abolished by Plin3 knockdown using RNA interference. Furthermore, Plin3 directly interacted with the autophagy proteins focal adhesion interaction protein 200 KDa and autophagy-related 16L, suggesting that Plin3 functions as a docking protein or is involved in autophagosome formation to activate lipophagy. Finally, we show that mTORC1 phosphorylated Plin3 to promote LD degradation. CONCLUSIONS: These results reveal that mTORC1 regulates liver lipophagy through a mechanism dependent on Plin3 phosphorylation. We propose that stimulating this pathway can enhance lipophagy in hepatocytes to help protect the liver from lipid-mediated toxicity, thus offering a therapeutic strategy in NAFLD.


Asunto(s)
Autofagia , Hígado Graso/metabolismo , Hepatocitos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Perilipina-3/metabolismo , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
12.
Sci Rep ; 11(1): 9643, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953304

RESUMEN

Tobacco smoking is the largest risk factor for developing chronic obstructive pulmonary disease (COPD), and is associated with hyperresponsiveness of airway smooth muscle (ASM). Chronic exposure to cigarette smoke (CS) leads to airway inflammation and remodelling. However, the direct effect of gaseous CS or CS extract (CSE) on human airway smooth muscle cell (hASMC) function remains poorly understood. This study investigated the acute effect of CS/CSE on calcium homeostasis, a key regulator of ASM physiology and pathophysiology. Primary hASMC were isolated from non-smoking donor lungs, and subjected to Ca2+ imaging studies. We found that both CS, and CSE, rapidly elevated cytosolic Ca2+ in hASMC through stimulation of plasmalemmal Ca2+ influx, but excluded store-operated and L-type Ca2+ channels as mediators of this effect. Using a specific pharmacological inhibitor, or shRNA-driven knockdown, we established that both CS and CSE stimulated Ca2+ influx in hASMC through the neurogenic pain receptor channel, transient receptor potential ankyrin 1 (TRPA1). CS/CSE-dependent, TRPA1-mediated Ca2+ influx led to myosin light-chain phosphorylation, a key process regulating ASM contractility. We conclude that TRPA1 is likely an important link between CS/CSE exposure and airway hyperresponsiveness, and speculate that acute CS/CSE-induced Ca2+ influx could lead to exacerbated ASM contraction and potentially initiate further chronic pathological effects of tobacco smoke.


Asunto(s)
Calcio/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Canal Catiónico TRPA1/metabolismo , Tráquea/efectos de los fármacos , Humanos , Miocitos del Músculo Liso/metabolismo , Fosforilación/efectos de los fármacos , Humo , Tráquea/metabolismo
14.
Nat Metab ; 2(11): 1350-1367, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33168981

RESUMEN

Fibrosis is a common pathological feature of chronic disease. Deletion of the NF-κB subunit c-Rel limits fibrosis in multiple organs, although the mechanistic nature of this protection is unresolved. Using cell-specific gene-targeting manipulations in mice undergoing liver damage, we elucidate a critical role for c-Rel in controlling metabolic changes required for inflammatory and fibrogenic activities of hepatocytes and macrophages and identify Pfkfb3 as the key downstream metabolic mediator of this response. Independent deletions of Rel in hepatocytes or macrophages suppressed liver fibrosis induced by carbon tetrachloride, while combined deletion had an additive anti-fibrogenic effect. In transforming growth factor-ß1-induced hepatocytes, c-Rel regulates expression of a pro-fibrogenic secretome comprising inflammatory molecules and connective tissue growth factor, the latter promoting collagen secretion from HMs. Macrophages lacking c-Rel fail to polarize to M1 or M2 states, explaining reduced fibrosis in RelΔLysM mice. Pharmacological inhibition of c-Rel attenuated multi-organ fibrosis in both murine and human fibrosis. In conclusion, activation of c-Rel/Pfkfb3 in damaged tissue instigates a paracrine signalling network among epithelial, myeloid and mesenchymal cells to stimulate fibrogenesis. Targeting the c-Rel-Pfkfb3 axis has potential for therapeutic applications in fibrotic disease.


Asunto(s)
Epitelio/patología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Macrófagos/patología , Proteínas Proto-Oncogénicas c-rel/genética , Animales , Polaridad Celular/genética , Marcación de Gen , Hepatocitos/patología , Hidroxiprolina/metabolismo , Cirrosis Hepática/prevención & control , Regeneración Hepática/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitosis/genética , Comunicación Paracrina/genética , Fosfofructoquinasa-2/genética , Proteínas Proto-Oncogénicas c-rel/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-rel/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-32984077

RESUMEN

Exposure to respiratory pathogens is a leading cause of exacerbations of airway diseases such as asthma and chronic obstructive pulmonary disease (COPD). Pellino-1 is an E3 ubiquitin ligase known to regulate virally-induced inflammation. We wished to determine the role of Pellino-1 in the host response to respiratory viruses in health and disease. Pellino-1 expression was examined in bronchial sections from patients with GOLD stage two COPD and healthy controls. Primary bronchial epithelial cells (PBECs) in which Pellino-1 expression had been knocked down were extracellularly challenged with the TLR3 agonist poly(I:C). C57BL/6 Peli1-/- mice and wild type littermates were subjected to intranasal infection with clinically-relevant respiratory viruses: rhinovirus (RV1B) and influenza A. We found that Pellino-1 is expressed in the airways of normal subjects and those with COPD, and that Pellino-1 regulates TLR3 signaling and responses to airways viruses. In particular we observed that knockout of Pellino-1 in the murine lung resulted in increased production of proinflammatory cytokines IL-6 and TNFα upon viral infection, accompanied by enhanced recruitment of immune cells to the airways, without any change in viral replication. Pellino-1 therefore regulates inflammatory airway responses without altering replication of respiratory viruses.


Asunto(s)
Infecciones por Picornaviridae , Enfermedad Pulmonar Obstructiva Crónica , Virosis , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares , Rhinovirus , Ubiquitina-Proteína Ligasas/genética
16.
Nat Commun ; 11(1): 4659, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938936

RESUMEN

The αvß6 integrin plays a key role in the activation of transforming growth factor-ß (TGFß), a pro-fibrotic mediator that is pivotal to the development of idiopathic pulmonary fibrosis (IPF). We identified a selective small molecule αvß6 RGD-mimetic, GSK3008348, and profiled it in a range of disease relevant pre-clinical systems. To understand the relationship between target engagement and inhibition of fibrosis, we measured pharmacodynamic and disease-related end points. Here, we report, GSK3008348 binds to αvß6 with high affinity in human IPF lung and reduces downstream pro-fibrotic TGFß signaling to normal levels. In human lung epithelial cells, GSK3008348 induces rapid internalization and lysosomal degradation of the αvß6 integrin. In the murine bleomycin-induced lung fibrosis model, GSK3008348 engages αvß6, induces prolonged inhibition of TGFß signaling and reduces lung collagen deposition and serum C3M, a marker of IPF disease progression. These studies highlight the potential of inhaled GSK3008348 as an anti-fibrotic therapy.


Asunto(s)
Butiratos/farmacología , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Integrinas/antagonistas & inhibidores , Naftiridinas/farmacología , Pirazoles/farmacología , Pirrolidinas/farmacología , Administración por Inhalación , Animales , Antígenos de Neoplasias/metabolismo , Bleomicina/toxicidad , Butiratos/administración & dosificación , Butiratos/metabolismo , Butiratos/farmacocinética , Colágeno/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/patología , Integrinas/metabolismo , Masculino , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Naftiridinas/administración & dosificación , Naftiridinas/metabolismo , Naftiridinas/farmacocinética , Pirazoles/administración & dosificación , Pirazoles/metabolismo , Pirazoles/farmacocinética , Pirrolidinas/administración & dosificación , Pirrolidinas/metabolismo , Pirrolidinas/farmacocinética , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Tomografía Computarizada de Emisión de Fotón Único , Factor de Crecimiento Transformador beta/metabolismo , Investigación Biomédica Traslacional
17.
Bone Joint J ; 102-B(10): 1331-1340, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32993344

RESUMEN

AIMS: Stiffness is a common complication after total knee arthroplasty (TKA). Pathogenesis is not understood, treatment options are limited, and diagnosis is challenging. The aim of this study was to investigate if MRI can be used to visualize intra-articular scarring in patients with stiff, painful knee arthroplasties. METHODS: Well-functioning primary TKAs (n = 11), failed non-fibrotic TKAs (n = 5), and patients with a clinical diagnosis of fibrosis1 (n = 8) underwent an MRI scan with advanced metal suppression (Slice Encoding for Metal Artefact Correction, SEMAC) with gadolinium contrast. Fibrotic tissue (low intensity on T1 and T2, low-moderate post-contrast enhancement) was quantified (presence and tissue thickness) in six compartments: supra/infrapatella, medial/lateral gutters, and posterior medial/lateral. RESULTS: Fibrotic tissue was identified in all patients studied. However, tissue was significantly thicker in fibrotic patients (4.4 mm ± 0.2 mm) versus non-fibrotic (2.5 mm ± 0.4 mm) and normal TKAs (1.9 mm ± 0.2 mm, p = < 0.05). Significant (> 4 mm thick) tissue was seen in 26/48 (54%) of compartments examined in the fibrotic group, compared with 17/30 (57%) non-fibrotic, and 10/66 (15%) normal TKAs. Although revision surgery did improve range of movement (ROM) in all fibrotic patients, clinically significant restriction remained post-surgery. CONCLUSION: Stiff TKAs contain intra-articular fibrotic tissue that is identifiable by MRI. Studies should evaluate whether MRI is useful for surgical planning of debridement, and as a non-invasive measurement tool following interventions for stiffness caused by fibrosis. Revision for stiffness can improve ROM, but outcomes are sub-optimal and new treatments are required. Cite this article: Bone Joint J 2020;102-B(10):1331-1340.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Artropatías/diagnóstico por imagen , Artropatías/etiología , Imagen por Resonancia Magnética/métodos , Complicaciones Posoperatorias/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Medios de Contraste , Femenino , Fibrosis , Humanos , Aumento de la Imagen , Masculino , Metales , Persona de Mediana Edad
18.
Rheumatology (Oxford) ; 59(12): 3939-3951, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32725139

RESUMEN

OBJECTIVES: NF-κB regulates genes that control inflammation, cell proliferation, differentiation and survival. Dysregulated NF-κB signalling alters normal skin physiology and deletion of cRel limits bleomycin-induced skin fibrosis. This study investigates the role of cRel in modulating fibroblast phenotype in the context of SSc. METHODS: Fibrosis was assessed histologically in mice challenged with bleomycin to induce lung or skin fibrosis. RNA sequencing and pathway analysis was performed on wild type and Rel-/- murine lung and dermal fibroblasts. Functional assays examined fibroblast proliferation, migration and matrix production. cRel overexpression was investigated in human dermal fibroblasts. cRel immunostaining was performed on lung and skin tissue sections from SSc patients and non-fibrotic controls. RESULTS: cRel expression was elevated in murine lung and skin fibrosis models. Rel-/- mice were protected from developing pulmonary fibrosis. Soluble collagen production was significantly decreased in fibroblasts lacking cRel while proliferation and migration of these cells was significantly increased. cRel regulates genes involved in extracellular structure and matrix organization. Positive cRel staining was observed in fibroblasts in human SSc skin and lung tissue. Overexpression of constitutively active cRel in human dermal fibroblasts increased expression of matrix genes. An NF-κB gene signature was identified in diffuse SSc skin and nuclear cRel expression was elevated in SSc skin fibroblasts. CONCLUSION: cRel regulates a pro-fibrogenic transcriptional programme in fibroblasts that may contribute to disease pathology. Targeting cRel signalling in fibroblasts of SSc patients could provide a novel therapeutic avenue to limit scar formation in this disease.


Asunto(s)
Fibroblastos/metabolismo , Proteínas Proto-Oncogénicas c-rel/metabolismo , Esclerodermia Sistémica/metabolismo , Animales , Matriz Extracelular/metabolismo , Fibrosis , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Humanos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Esclerodermia Sistémica/patología
19.
Ecotoxicol Environ Saf ; 202: 110902, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32634706

RESUMEN

The ionic liquid 1-octyl-3-methylimidazolium (M8OI) has been found in the environment and identified as a hazard for triggering the liver disease primary biliary cholangitis (PBC). Given limited toxicity data for M8OI and other structurally-related ionic liquids, target organs for M8OI toxicity were examined. Adult male C57Bl6 mice were acutely exposed to 0-10 mg/kg body weight M8OI via 2 intraperitoneal injections (time zero and 18 h) and effects examined at 24 h. At termination, tissue histopathology, serum and urinary endpoints were examined. No overt pathological changes were observed in the heart and brain. In contrast, focal and mild to multifocal and moderate degeneration with a general trend for an increase in severity with increased dose was observed in the kidney. These changes were accompanied by a dose-dependent increased expression of Kim1 in kidney tissue, marked elevations in urinary Kim1 protein and a dose-dependent increase in serum creatinine. Hepatic changes were limited to a significant dose-dependent loss of hepatic glycogen and a mild but significant increase in portal tract inflammatory recruitment and/or fibroblastic proliferation accompanied by a focal fibrotic change. Cultured mouse tissue slices reflected these in vivo effects in that dose-dependent injury was observed in kidney slices but not in the liver. Kidney slices accumulated higher levels of M8OI than liver slices (e.g. at 10 µM, greater than 4 fold) and liver slices where markedly more active in the metabolism of M8OI. These data indicate that the kidney is a target organ for the toxic effects of M8OI accompanied by mild cholangiopathic changes in the liver after intraperitoneal administration.


Asunto(s)
Sustancias Peligrosas/toxicidad , Líquidos Iónicos/toxicidad , Riñón/efectos de los fármacos , Pruebas de Toxicidad , Animales , Iones/farmacología , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL
20.
JCI Insight ; 5(4)2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32102985

RESUMEN

Neutrophils are the most abundant inflammatory cells at the earliest stages of wound healing and play important roles in wound repair and fibrosis. Formyl peptide receptor 1 (FPR-1) is abundantly expressed on neutrophils and has been shown to regulate their function, yet the importance of FPR-1 in fibrosis remains ill defined. FPR-1-deficient (fpr1-/-) mice were protected from bleomycin-induced pulmonary fibrosis but developed renal and hepatic fibrosis normally. Mechanistically, we observed a failure to effectively recruit neutrophils to the lungs of fpr1-/- mice, whereas neutrophil recruitment was unaffected in the liver and kidney. Using an adoptive transfer model we demonstrated that the defect in neutrophil recruitment to the lung was intrinsic to the fpr1-/- neutrophils, as C57BL/6 neutrophils were recruited normally to the damaged lung in fpr1-/- mice. Finally, C57BL/6 mice in which neutrophils had been depleted were protected from pulmonary fibrosis. In conclusion, FPR-1 and FPR-1 ligands are required for effective neutrophil recruitment to the damaged lung. Failure to recruit neutrophils or depletion of neutrophils protects from pulmonary fibrosis.


Asunto(s)
Infiltración Neutrófila/fisiología , Fibrosis Pulmonar/fisiopatología , Receptores de Formil Péptido/fisiología , Animales , Bleomicina/toxicidad , Humanos , Ligandos , Ratones Endogámicos C57BL , Ratones Noqueados , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Receptores de Formil Péptido/genética , Receptores de Formil Péptido/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA