Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Commun Biol ; 7(1): 208, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38379085

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer in the adult population. Late diagnosis, resistance to therapeutics and recurrence of metastatic lesions account for the highest mortality rate among kidney cancer patients. Identifying novel biomarkers for early cancer detection and elucidating the mechanisms underlying ccRCC will provide clues to treat this aggressive malignant tumor. Here, we report that the ubiquitin ligase praja2 forms a complex with-and ubiquitylates the AP2 adapter complex, contributing to receptor endocytosis and clearance. In human RCC tissues and cells, downregulation of praja2 by oncogenic miRNAs (oncomiRs) and the proteasome markedly impairs endocytosis and clearance of the epidermal growth factor receptor (EGFR), and amplifies downstream mitogenic and proliferative signaling. Restoring praja2 levels in RCC cells downregulates EGFR, rewires cancer cell metabolism and ultimately inhibits tumor cell growth and metastasis. Accordingly, genetic ablation of praja2 in mice upregulates RTKs (i.e. EGFR and VEGFR) and induces epithelial and vascular alterations in the kidney tissue.In summary, our findings identify a regulatory loop between oncomiRs and the ubiquitin proteasome system that finely controls RTKs endocytosis and clearance, positively impacting mitogenic signaling and kidney cancer growth.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Adulto , Animales , Humanos , Ratones , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Regulación hacia Abajo , Endocitosis , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Ubiquitina/metabolismo
2.
EMBO Rep ; 24(4): e55571, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36744302

RESUMEN

Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinal degeneration, obesity, renal abnormalities, postaxial polydactyly, and developmental defects. Genes mutated in BBS encode for components and regulators of the BBSome, an octameric complex that controls the trafficking of cargos and receptors within the primary cilium. Although both structure and function of the BBSome have been extensively studied, the impact of ubiquitin signaling on BBSome is largely unknown. We identify the E3 ubiquitin ligase PJA2 as a novel resident of the ciliary compartment and regulator of the BBSome. Upon GPCR-cAMP stimulation, PJA2 ubiquitylates BBSome subunits. We demonstrate that ubiquitylation of BBS1 at lysine 143 increases the stability of the BBSome and promotes its binding to BBS3, an Arf-like GTPase protein controlling the targeting of the BBSome to the ciliary membrane. Downregulation of PJA2 or expression of a ubiquitylation-defective BBS1 mutant (BBS1K143R ) affects the trafficking of G-protein-coupled receptors (GPCRs) and Shh-dependent gene transcription. Expression of BBS1K143R in vivo impairs cilium formation, embryonic development, and photoreceptors' morphogenesis, thus recapitulating the BBS phenotype in the medaka fish model.


Asunto(s)
Síndrome de Bardet-Biedl , Cilios , Animales , Cilios/metabolismo , Transporte de Proteínas , Transducción de Señal , Síndrome de Bardet-Biedl/genética , Receptores Acoplados a Proteínas G/genética , Ubiquitinación
3.
Commun Biol ; 5(1): 780, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918402

RESUMEN

Glioblastoma multiforme (GBM) is the most frequent and aggressive form of primary brain tumor in the adult population; its high recurrence rate and resistance to current therapeutics urgently demand a better therapy. Regulation of protein stability by the ubiquitin proteasome system (UPS) represents an important control mechanism of cell growth. UPS deregulation is mechanistically linked to the development and progression of a variety of human cancers, including GBM. Thus, the UPS represents a potentially valuable target for GBM treatment. Using an integrated approach that includes proteomics, transcriptomics and metabolic profiling, we identify praja2, a RING E3 ubiquitin ligase, as the key component of a signaling network that regulates GBM cell growth and metabolism. Praja2 is preferentially expressed in primary GBM lesions expressing the wild-type isocitrate dehydrogenase 1 gene (IDH1). Mechanistically, we found that praja2 ubiquitylates and degrades the kinase suppressor of Ras 2 (KSR2). As a consequence, praja2 restrains the activity of downstream AMP-dependent protein kinase in GBM cells and attenuates the oxidative metabolism. Delivery in the brain of siRNA targeting praja2 by transferrin-targeted self-assembling nanoparticles (SANPs) prevented KSR2 degradation and inhibited GBM growth, reducing the size of the tumor and prolonging the survival rate of treated mice. These data identify praja2 as an essential regulator of cancer cell metabolism, and as a potential therapeutic target to suppress GBM growth.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioblastoma/metabolismo , Humanos , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal , Ubiquitina
4.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35887048

RESUMEN

Second messenger cyclic adenosine monophosphate (cAMP) has been found to regulate multiple mitochondrial functions, including respiration, dynamics, reactive oxygen species production, cell survival and death through the activation of cAMP-dependent protein kinase A (PKA) and other effectors. Several members of the large family of A kinase anchor proteins (AKAPs) have been previously shown to locally amplify cAMP/PKA signaling to mitochondria, promoting the assembly of signalosomes, regulating multiple cardiac functions under both physiological and pathological conditions. In this review, we will discuss roles and regulation of major mitochondria-targeted AKAPs, along with opportunities and challenges to modulate their functions for translational purposes in the cardiovascular system.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Cardiología , Proteínas de Anclaje a la Quinasa A/metabolismo , AMP Cíclico/metabolismo , Corazón , Mitocondrias/metabolismo , Biología Molecular
5.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34360942

RESUMEN

The exact mechanism underlying selective dopaminergic neurodegeneration is not completely understood. The complex interplay among toxic alpha-synuclein aggregates, oxidative stress, altered intracellular Ca2+-homeostasis, mitochondrial dysfunction and disruption of mitochondrial integrity is considered among the pathogenic mechanisms leading to dopaminergic neuronal loss. We herein investigated the molecular mechanisms leading to mitochondrial dysfunction and its relationship with activation of the neuroinflammatory process occurring in Parkinson's disease. To address these issues, experiments were performed in vitro and in vivo in mice carrying the human mutation of α-synuclein A53T under the prion murine promoter. In these models, the expression and activity of NCX isoforms, a family of important transporters regulating ionic homeostasis in mammalian cells working in a bidirectional way, were evaluated in neurons and glial cells. Mitochondrial function was monitored with confocal microscopy and fluorescent dyes to measure mitochondrial calcium content and mitochondrial membrane potential. Parallel experiments were performed in 4 and 16-month-old A53T-α-synuclein Tg mice to correlate the functional data obtained in vitro with mitochondrial dysfunction and neuroinflammation through biochemical analysis. The results obtained demonstrated: 1. in A53T mice mitochondrial dysfunction occurs early in midbrain and later in striatum; 2. mitochondrial dysfunction occurring in the midbrain is mediated by the impairment of NCX3 protein expression in neurons and astrocytes; 3. mitochondrial dysfunction occurring early in midbrain triggers neuroinflammation later into the striatum, thus contributing to PD progression during mice aging.


Asunto(s)
Mesencéfalo/metabolismo , Mitocondrias/metabolismo , Enfermedad de Parkinson/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , alfa-Sinucleína/genética , Animales , Astrocitos/metabolismo , Calcio/metabolismo , Células Cultivadas , Neuronas Dopaminérgicas/metabolismo , Mesencéfalo/citología , Ratones , Ratones Endogámicos C57BL , Mutación Missense , Enfermedad de Parkinson/genética , Intercambiador de Sodio-Calcio/genética , alfa-Sinucleína/metabolismo
6.
Front Aging Neurosci ; 12: 100, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32372945

RESUMEN

The loss of dopaminergic (DA) neurons in the substantia nigra leads to a progressive, long-term decline of movement and other non-motor deficits. The symptoms of Parkinson's disease (PD) often appear later in the course of the disease, when most of the functional dopaminergic neurons have been lost. The late onset of the disease, the severity of the illness, and its impact on the global health system demand earlier diagnosis and better targeted therapy. PD etiology and pathogenesis are largely unknown. There are mutations in genes that have been linked to PD and, from these complex phenotypes, mitochondrial dysfunction emerged as central in the pathogenesis and evolution of PD. In fact, several PD-associated genes negatively impact on mitochondria physiology, supporting the notion that dysregulation of mitochondrial signaling and homeostasis is pathogenically relevant. Derangement of mitochondrial homeostatic controls can lead to oxidative stress and neuronal cell death. Restoring deranged signaling cascades to and from mitochondria in PD neurons may then represent a viable opportunity to reset energy metabolism and delay the death of dopaminergic neurons. Here, we will highlight the relevance of dysfunctional mitochondrial homeostasis and signaling in PD, the molecular mechanisms involved, and potential therapeutic approaches to restore mitochondrial activities in damaged neurons.

7.
Cell Calcium ; 87: 102193, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32193001

RESUMEN

Mitochondria are highly dynamic organelles extremely important for cell survival. Their structure resembles that of prokaryotic cells since they are composed with two membranes, the inner (IMM) and the outer mitochondrial membrane (OMM) delimitating the intermembrane space (IMS) and the matrix which contains mitochondrial DNA (mtDNA). This structure is strictly related to mitochondrial function since they produce the most of the cellular ATP through the oxidative phosphorylation which generate the electrochemical gradient at the two sides of the inner mitochondrial membrane an essential requirement for mitochondrial function. Cells of highly metabolic demand like those composing muscle, liver and brain, are particularly dependent on mitochondria for their activities. Mitochondria undergo to continual changes in morphology since, they fuse and divide, branch and fragment, swell and extend. Importantly, they move throughout the cell to deliver ATP and other metabolites where they are mostly required. Along with the capability to control energy metabolism, mitochondria play a critical role in the regulation of many physiological processes such as programmed cell death, autophagy, redox signalling, and stem cells reprogramming. All these phenomena are regulated by Ca2+ ions within this organelle. This review will discuss the molecular mechanisms regulating mitochondrial calcium cycling in physiological and pathological conditions with particular regard to their impact on mitochondrial dynamics and function during ischemia. Particular emphasis will be devoted to the role played by NCX3 and AKAP121 as new molecular targets for mitochondrial function and dysfunction.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Calcio/metabolismo , Núcleo Celular/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuronas/patología , Intercambiador de Sodio-Calcio/metabolismo , Animales , Hipoxia de la Célula , Humanos
8.
Front Physiol ; 9: 558, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29892230

RESUMEN

Left ventricular hypertrophy (LVH) is a major contributor to the development of heart failure (HF). Alterations in cyclic adenosine monophosphate (cAMP)-dependent signaling pathways participate in cardiomyocyte hypertrophy and mitochondrial dysfunction occurring in LVH and HF. cAMP signals are received and integrated by a family of cAMP-dependent protein kinase A (PKA) anchor proteins (AKAPs), tethering PKA to discrete cellular locations. AKAPs encoded by the Akap1 gene (mitoAKAPs) promote PKA mitochondrial targeting, regulating mitochondrial structure and function, reactive oxygen species production, and cell survival. To determine the role of mitoAKAPs in LVH development, in the present investigation, mice with global genetic deletion of Akap1 (Akap1-/-), Akap1 heterozygous (Akap1+/-), and their wild-type (wt) littermates underwent transverse aortic constriction (TAC) or SHAM procedure for 1 week. In wt mice, pressure overload induced the downregulation of AKAP121, the major cardiac mitoAKAP. Compared to wt, Akap1-/- mice did not display basal alterations in cardiac structure or function and cardiomyocyte size or fibrosis. However, loss of Akap1 exacerbated LVH and cardiomyocyte hypertrophy induced by pressure overload and accelerated the progression toward HF in TAC mice, and these changes were not observed upon prevention of AKAP121 degradation in seven in absentia homolog 2 (Siah2) knockout mice (Siah2-/-). Loss of Akap1 was also associated to a significant increase in cardiac apoptosis as well as lack of activation of Akt signaling after pressure overload. Taken together, these results demonstrate that in vivo genetic deletion of Akap1 enhances LVH development and accelerates pressure overload-induced cardiac dysfunction, pointing at Akap1 as a novel repressor of pathological LVH. These results confirm and extend the important role of mitoAKAPs in cardiac response to stress.

9.
Biochim Biophys Acta Rev Cancer ; 1869(2): 293-302, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29673970

RESUMEN

Mitochondria are the powerhouse organelles present in all eukaryotic cells. They play a fundamental role in cell respiration, survival and metabolism. Stimulation of G-protein coupled receptors (GPCRs) by dedicated ligands and consequent activation of the cAMP·PKA pathway finely couple energy production and metabolism to cell growth and survival. Compartmentalization of PKA signaling at mitochondria by A-Kinase Anchor Proteins (AKAPs) ensures efficient transduction of signals generated at the cell membrane to the organelles, controlling important aspects of mitochondrial biology. Emerging evidence implicates mitochondria as essential bioenergetic elements of cancer cells that promote and support tumor growth and metastasis. In this context, mitochondria provide the building blocks for cellular organelles, cytoskeleton and membranes, and supply all the metabolic needs for the expansion and dissemination of actively replicating cancer cells. Functional interference with mitochondrial activity deeply impacts on cancer cell survival and proliferation. Therefore, mitochondria represent valuable targets of novel therapeutic approaches for the treatment of cancer patients. Understanding the biology of mitochondria, uncovering the molecular mechanisms regulating mitochondrial activity andmapping the relevant metabolic and signaling networks operating in cancer cells will undoubtly contribute to create a molecular platform to be used for the treatment of proliferative disorders. Here, we will highlight the emerging roles of signaling pathways acting downstream to GPCRs and their intersection with the ubiquitin proteasome system in the control of mitochondrial activity in different aspects of cancer cell biology.


Asunto(s)
Compartimento Celular , Mitocondrias/metabolismo , Neoplasias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Antineoplásicos/uso terapéutico , AMP Cíclico/metabolismo , Metabolismo Energético , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Dinámicas Mitocondriales , Mitofagia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Biogénesis de Organelos , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Receptores Acoplados a Proteínas G/efectos de los fármacos , Sistemas de Mensajero Secundario , Transducción de Señal/efectos de los fármacos , Ubiquitinación
10.
Cell Death Dis ; 8(6): e2842, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28569781

RESUMEN

Mitochondria are the powerhouses of energy production and the sites where metabolic pathway and survival signals integrate and focus, promoting adaptive responses to hormone stimulation and nutrient availability. Increasing evidence suggests that mitochondrial bioenergetics, metabolism and signaling are linked to tumorigenesis. AKAP1 scaffolding protein integrates cAMP and src signaling on mitochondria, regulating organelle biogenesis, oxidative metabolism and cell survival. Here, we provide evidence that AKAP1 is a transcriptional target of Myc and supports the growth of cancer cells. We identify Sestrin2, a leucine sensor and inhibitor of the mammalian target of rapamycin (mTOR), as a novel component of the complex assembled by AKAP1 on mitochondria. Downregulation of AKAP1 impaired mTOR pathway and inhibited glioblastoma growth. Both effects were reversed by concomitant depletion of AKAP1 and sestrin2. High levels of AKAP1 were found in a wide variety of high-grade cancer tissues. In lung cancer, AKAP1 expression correlates with high levels of Myc, mTOR phosphorylation and reduced patient survival. Collectively, these data disclose a previously unrecognized role of AKAP1 in mTOR pathway regulation and cancer growth. AKAP1/mTOR signal integration on mitochondria may provide a new target for cancer therapy.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/genética , Neoplasias Encefálicas/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Mitocondrias/genética , Proteínas Proto-Oncogénicas c-myc/genética , Serina-Treonina Quinasas TOR/genética , Proteínas de Anclaje a la Quinasa A/antagonistas & inhibidores , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Células Epiteliales/metabolismo , Células Epiteliales/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Ratones Desnudos , Mitocondrias/metabolismo , Trasplante de Neoplasias , Neuroglía/metabolismo , Neuroglía/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Análisis de Supervivencia , Serina-Treonina Quinasas TOR/metabolismo , Transcripción Genética
12.
PLoS One ; 11(5): e0154076, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27136357

RESUMEN

A-kinase anchoring proteins (AKAPs) transmit signals cues from seven-transmembrane receptors to specific sub-cellular locations. Mitochondrial AKAPs encoded by the Akap1 gene have been shown to modulate mitochondrial function and reactive oxygen species (ROS) production in the heart. Under conditions of hypoxia, mitochondrial AKAP121 undergoes proteolytic degradation mediated, at least in part, by the E3 ubiquitin ligase Seven In-Absentia Homolog 2 (Siah2). In the present study we hypothesized that Akap1 might be crucial to preserve mitochondrial function and structure, and cardiac responses to myocardial ischemia. To test this, eight-week-old Akap1 knockout mice (Akap1-/-), Siah2 knockout mice (Siah2-/-) or their wild-type (wt) littermates underwent myocardial infarction (MI) by permanent left coronary artery ligation. Age and gender matched mice of either genotype underwent a left thoracotomy without coronary ligation and were used as controls (sham). Twenty-four hours after coronary ligation, Akap1-/- mice displayed larger infarct size compared to Siah2-/- or wt mice. One week after MI, cardiac function and survival were also significantly reduced in Akap1-/- mice, while cardiac fibrosis was significantly increased. Akap1 deletion was associated with remarkable mitochondrial structural abnormalities at electron microscopy, increased ROS production and reduced mitochondrial function after MI. These alterations were associated with enhanced cardiac mitophagy and apoptosis. Autophagy inhibition by 3-methyladenine significantly reduced apoptosis and ameliorated cardiac dysfunction following MI in Akap1-/- mice. These results demonstrate that Akap1 deficiency promotes cardiac mitochondrial aberrations and mitophagy, enhancing infarct size, pathological cardiac remodeling and mortality under ischemic conditions. Thus, mitochondrial AKAPs might represent important players in the development of post-ischemic cardiac remodeling and novel therapeutic targets.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Mitocondrias/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Adenina/análogos & derivados , Adenina/farmacología , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Modelos Animales de Enfermedad , Ecocardiografía , Etiquetado Corte-Fin in Situ , Ratones , Ratones Noqueados , Microscopía Electrónica , Mitocondrias/genética , Mitocondrias/patología , Mitocondrias/ultraestructura , Mitofagia/efectos de los fármacos , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA