Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166932, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37926360

RESUMEN

Several converging lines of evidence from our group support a potential role of RLIP76 (AKA Rlip) in neurodegenerative disorders, including Alzheimer's Disease (AD). However, the role of Rlip in Alzheimer's and other neurodegenerative diseases is not well understood. The purpose of the present study is to determine the role of Rlip in the brains of AD patients and control subjects. To achieve our goals, we used frozen tissues and formalin-fixed paraffin-embedded postmortem brains from AD patients of different Braak stages and age-matched control subjects. Our immunohistology and immunoblotting blotting analysis revealed that expression of Rlip protein gradually and significantly decreased (p = 0.0001) with AD progression, being lowest in Braak stage IV-V. Rlip was colocalized with Amyloid beta (Aß) and phosphorylated tau (p-Tau) as observed by IHC staining and co-immunoprecipitation studies. Lipid peroxidation (4-HNE generation) and H2O2 production were significantly higher (p = 0.004 and 0.0001 respectively) in AD patients compared to controls, and this was accompanied by lower ATP production in AD (p = 0.0009). Oxidative DNA damage was measured by 8-Hydroxyguanosine (8-OHdG) in tissue lysates by ELISA and COMET assay. AD 8-OHdG levels were significantly higher (p = 0.0001) compared to controls. COMET assay was performed in brain cells, isolated from frozen postmortem samples. The control samples showed minimal DNA in comets representing few DNA strand breaks (<20 %), (score-0-1). However, the AD group showed an average of 50 % to 65 % of DNA in comet tails (score-4-5) indicating numerous DNA strand breaks. The difference between the two groups was significant (p = 0.001), as analyzed by Open Comet by ImageJ. Elevated DNA damage was further examined by western blot analysis for phosphorylated histone variant H2AX (γH2AX). Induction of γH2AX was very significant (p < 0.0001) and confirmed the presence of double-strand breaks in DNA. Overall, our results indicate an important role for Rlip in maintaining neuronal health and homeostasis by suppressing cellular oxidative stress and DNA damage. Based on our findings, we cautiously conclude that Rlip is a promising therapeutic target for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Mitocondriales , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Autopsia , Encéfalo/metabolismo , ADN/metabolismo , Peróxido de Hidrógeno/metabolismo , Enfermedades Mitocondriales/metabolismo , Estrés Oxidativo/fisiología
4.
Cells ; 12(12)2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37371116

RESUMEN

RalBP1 (Rlip) is a stress-activated protein that is believed to play a large role in aging and neurodegenerative diseases such as Alzheimer's disease (AD) and other tauopathies. The purpose of our study was to understand the role of Rlip in mutant Tau-expressed immortalized hippocampal HT22 cells. In the current study, we used mutant Tau (mTau)-expressed HT22 neurons and HT22 cells transfected with Rlip-cDNA and/or silenced RNA, and studied the cell survival, mitochondrial respiration, mitochondrial function, immunoblotting, and immunofluorescence analysis of synaptic and mitophagy proteins and the colocalization of Rlip and mTau proteins. We found Rlip protein levels were reduced in mTau-HT22 cells, Rlip silenced HT22 cells, and mTau + Rlip RNA silenced HT22 cells; on the other hand, increased Rlip levels were observed in Rlip cDNA transfected HT22 cells. We found cell survival was decreased in mTau-HT22 cells and RNA-silenced HT22 cells. However, cell survival was increased in Rlip-overexpressed mTau-HT22 cells. A significantly reduced oxygen consumption rate (OCR) was found in mTau-HT22 cells and in RNA-silenced Rlip-HT22 cells, with an even greater reduction in mTau-HT22 + Rlip RNA-silenced HT22 cells. A significantly increased OCR was found in Rlip-overexpressed HT22 cells and in all groups of cells that overexpress Rlip cDNA. Mitochondrial function was defective in mTau-HT22 cells, RNA silenced Rlip in HT22 cells, and was further defective in mTau-HT22 + Rlip RNA-silenced HT22 cells; however, it was rescued in Rlip overexpressed in all groups of HT22 cells. Synaptic and mitophagy proteins were decreased in mTau-HT22 cells, and further reductions were found in RNA-silenced mTau-HT22 cells. However, these were increased in mTau + Rlip-overexpressed HT22 cells. An increased number of mitochondria and decreased mitochondrial length were found in mTau-HT22 cells. These were rescued in Rlip-overexpressed mTau-HT22 cells. These observations strongly suggest that Rlip deficiency causes oxidative stress/mitochondrial dysfunction and Rlip overexpression reverses these defects. Overall, our findings revealed that Rlip is a promising new target for aging, AD, and other tauopathies/neurological diseases.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , ADN Complementario/metabolismo , Enfermedad de Alzheimer/metabolismo , Neuronas/metabolismo , Tauopatías/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , ARN/metabolismo , Hipocampo/metabolismo
5.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166759, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37225106

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease that affects a large proportion of the aging population. RalBP1 (Rlip) is a stress-activated protein that plays a crucial role in oxidative stress and mitochondrial dysfunction in aging and neurodegenerative diseases but its precise role in the progression of AD is unclear. The purpose of our study is to understand the role of Rlip in the progression and pathogenesis of AD in mutant APP/amyloid beta (Aß)-expressed mouse primary hippocampal (HT22) hippocampal neurons. In the current study, we used HT22 neurons that express mAPP, transfected with Rlip-cDNA and/or RNA silenced, and studied cell survival, mitochondrial respiration, mitochondrial function, immunoblotting & immunofluorescence analysis of synaptic and mitophagy protein's and colocalization of Rlip and mutant APP/Aß proteins and mitochondrial length and number. We also assessed Rlip levels in autopsy brains from AD patients and control subjects. We found cell survival was decreased in mAPP-HT22 cells and RNA-silenced HT22 cells. However, cell survival was increased in Rlip-overexpressed mAPP-HT22 cells. Oxygen consumption rate (OCR) was decreased in mAPP-HT22 cells and RNA-silenced Rlip-HT22 cells. OCR was increased in Rlip-overexpressed in mAPP-HT22 cells. Mitochondrial function was defective in mAPP-HT22 cells and RNA silenced Rlip in HT22 cells, however, it was rescued in Rlip overexpressed mAPP-HT22 cells. Synaptic and mitophagy proteins were decreased in mAPP-HT22 cells, further reducing RNA-silenced Rlip-HT22 cells. However, these were increased in mAPP+Rlip-HT22 cells. Colocalization analysis revealed Rlip is colocalized with mAPP/Aß. An increased number of mitochondria and decreased mitochondrial length were found in mAPP-HT22 cells. These were rescued in Rlip overexpressed mAPP-HT22 cells. Reduced Rlip levels were found in autopsy brains from AD patients. These observations strongly suggest that Rlip deficiency causes oxidative stress/mitochondrial dysfunction and Rlip overexpression reduced these defects.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Enfermedades Neurodegenerativas/patología , Estrés Oxidativo , Mitocondrias/metabolismo , ARN/metabolismo
7.
NPJ Genom Med ; 7(1): 47, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941185

RESUMEN

MicroRNAs (miRNAs) are found in nerve terminals, synaptic vesicles, and synaptosomes, but it is unclear whether synaptic and cytosolic miRNA populations differ in Alzheimer's disease (AD) or if synaptosomal miRNAs affect AD synapse activity. To address these questions, we generated synaptosomes and cytosolic fractions from postmortem brains of AD and unaffected control (UC) samples and analyzed them using a global Affymetrix miRNAs microarray platform. A group of miRNAs significantly differed (P < 0.0001) with high fold changes variance (+/- >200-fold) in their expressions in different comparisons: (1) UC synaptosome vs UC cytosol, (2) AD synaptosomes vs AD cytosol, (3) AD cytosol vs UC cytosol, and (4) AD synaptosomes vs UC synaptosomes. MiRNAs data analysis revealed that some potential miRNAs were consistently different across sample groups. These differentially expressed miRNAs were further validated using AD postmortem brains, brains of APP transgenic (Tg2576), Tau transgenic (P301L), and wild-type mice. The miR-501-3p, miR-502-3p, and miR-877-5p were identified as potential synaptosomal miRNAs upregulated with disease progression based on AD Braak stages. Gene Ontology Enrichment and Ingenuity Pathway Analysis of synaptosomal miRNAs showed the involvement of miRNAs in nervous system development, cell junction organization, synapse assembly formation, and function of GABAergic synapse. This is the first description of synaptic versus cytosolic miRNAs in AD and their significance in synapse function.

8.
Int J Mol Sci ; 23(11)2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35682775

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most common cause of dementia in older people. AD is associated with the loss of synapses, oxidative stress, mitochondrial structural and functional abnormalities, microRNA deregulation, inflammatory responses, neuronal loss, accumulation of amyloid-beta (Aß) and phosphorylated tau (p-tau). AD occurs in two forms: early onset, familial AD and late-onset, sporadic AD. Causal factors are still unknown for a vast majority of AD patients. Genetic polymorphisms are proposed to contribute to late-onset AD via age-dependent increases in oxidative stress and mitochondrial abnormalities. Recent research from our lab revealed that reduced levels of Rlip76 induce oxidative stress, mitochondrial dysfunction and synaptic damage, leading to molecular and behavioral phenotypes resembling late-onset AD. Rlip76 is a multifunctional 76 kDa protein encoded by the RALBP1 gene, located on chromosome 18. Rlip is a stress-protective ATPase of the mercapturic acid pathway that couples clathrin-dependent endocytosis with the efflux of glutathione-electrophile conjugates. Rlip is evolutionarily highly conserved across species and is ubiquitously expressed in all tissues, including AD-affected brain regions, the cerebral cortex and hippocampus, where highly active neuronal metabolisms render the cells highly susceptible to intracellular oxidative damage. In the current article, we summarize molecular and cellular features of Rlip and how depleted Rlip may exacerbate oxidative stress, mitochondrial dysfunction and synaptic damage in AD. We also discuss the possible role of Rlip in aspects of learning and memory via axonal growth, dendritic remodeling, and receptor regulation. We conclude with a discussion of the potential for the contribution of genetic polymorphisms in Rlip to AD progression and the potential for Rlip-based therapies.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Estrés Oxidativo , Sinapsis/metabolismo
9.
J Alzheimers Dis ; 87(1): 33-49, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35275552

RESUMEN

Alzheimer's disease (AD) is a devastating illness in elderly individuals, that currently has no known cure. Causal genetic factors only account for 1-2% of AD patients. However, other causal factors are still unknown for a majority of AD patients. Currently, multiple factors are implicated in late-onset AD, including unhealthy diet, physical inactivity, traumatic brain injury, chronic conditions, epigenetic factors, and environmental exposures. Although clinical symptoms of dementia are common to all races and ethnic groups, conditions that lead to dementia are different in terms of lifestyle, genetic profile, and socio-economic conditions. Increasing evidence also suggests that some elderly individuals age without cognitive impairments in their 60-90s as seen in rural West Texas, while some individuals progress with chronic conditions and cognitive impairments into their 60s. To understand these discriminations, we assessed current literature on demographic features of health in rural West Texas. This paper also outlines our initiated clinical study with a purpose of understanding the factors that allow some individuals to live without cognitive impairments at the age of 60-90 years, whereas others develop deficits in cognitive function around or above 60 years. Our ongoing study hopes to determine the factors that delay aging in some individuals by investigating various aspects including genetics, epigenetics, ethnicity, biology, culture, and lifestyle. This will be achieved by gathering information about participants' ethnographic profiles, cognitive assessments, blood-profiles, brain scans, and blood-based genomic analyses in relation to lifestyle. The outcomes of our study will provide insights into healthy aging in rural West Texas.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Envejecimiento Saludable , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/genética , Enfermedad Crónica , Disfunción Cognitiva/psicología , Humanos , Texas/epidemiología
10.
Cancers (Basel) ; 14(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35158795

RESUMEN

Rlip76 (Rlip) is a multifunctional membrane protein that facilitates the high metabolic rates of cancer cells through the efflux of toxic metabolites and other functions. Rlip inhibition or depletion results in broad-spectrum anti-cancer effects in vitro and in vivo. Rlip depletion effectively suppresses malignancy and causes global reversion of characteristic CpG island methylomic and transcriptomic aberrations in the p53-null mouse model of spontaneous carcinogenesis through incompletely defined signaling and transcriptomic mechanisms. The methylome and transcriptome are normally regulated by the concerted actions of several mechanisms that include chromatin remodeling, promoter methylation, transcription factor interactions, and miRNAs. The present studies investigated the interaction of Rlip depletion or inhibition with the promoter methylation and transcription of selected cancer-related genes identified as being affected by Rlip depletion in our previous studies. We constructed novel promoter CpG island/luciferase reporter plasmids that respond only to CpG methylation and transcription factors. We found that Rlip depletion regulated expression by a transcription factor-based mechanism that functioned independently of promoter CpG methylation, lipid peroxidation, and p53 status.

11.
Artículo en Inglés | MEDLINE | ID: mdl-36816155

RESUMEN

On January 30, 2020, the COVID-19 epidemic was declared an international public health emergency by the World Health Organization. Given the growing impact of the pandemic, there is great interest in finding potential targets for treating infected or hospitalized COVID-19 patients. Therapeutic studies have been conducted on pre-existing drugs, which vary by country, including anti-malarial agents, antiviral agents, and convalescent plasma. However, many of these agents are ineffective at reducing mortality or only shorten the severity or duration of COVID-19 illness in hospitalized patients. As such, other alternatives for treating COVID-19 are being investigated. One such target of interest has been clathrin-dependent endocytosis (CDE). Clathrin-dependent endocytosis is the most commonly observed mechanism of viral entry into cells. However, there have been no published studies to date on CDE inhibition strategies against COVID-19. One such target is Rlip or RLIP76 (human gene RALBP1, 18p11.22). Among its many functions, Rlip is a stress-protective, Ral-regulated ATPase of the mercapturic acid pathway that transports glutathione-electrophile conjugates of electrophilic toxins, which are precursors of mercapturic acid that precedes de-glutamylation by gamma-glutamyl transferase. Rlip is also regulated by several G-proteins that coordinate movement of cells, organelles, membranes, cytoskeleton, macromolecules, and other small molecules. Previous studies have link Rlip in the pathogenesis of several viral illness. In this paper, we want to propose that RLIP76 (Rlip or RALBP1) may be a novel target for treating SARS-CoV-2 viral infections.

12.
Hum Mol Genet ; 31(7): 1022-1034, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-34559191

RESUMEN

The purpose of our study is to determine DDQ (diethyl (3,4-dihydroxyphenethylamino) (quinolin-4-yl) methylphosphonate)-a newly discovered molecule that has been shown to protect against phosphorylated tau (p-tau) in Alzheimer's disease (AD) pathogenesis. We used a well-studied tau (P301L) transgenic mouse model to achieve our goal. We administered DDQ into 12-month-old Tau mice, at 20 mg/kg body weight intraperitoneally two times per week for 2 months. We also assessed DDQ levels in the blood, skeletal muscle and brain using biochemical and molecular techniques. We investigated the mRNA and protein levels of mitochondrial dynamics, biogenesis, synaptic, p-tau and longevity genes sirtuins in DDQ-treated tau mice using real-time quantitative PCR (q-RT-PCR), immunoblotting and immunofluorescence techniques. Our extensive pharmacodynamics investigations revealed that skeletal muscle had the greatest peak levels of DDQ, followed by serum and brain. Interestingly, DDQ-treated tau mice had higher levels of mitochondrial fusion, biogenesis, synaptic genes and sirtuins than DDQ-untreated tau mice. In addition, DDQ-treated tau mice had lower levels of mitochondrial fission and p-tau than untreated tau mice. The current findings, combined with our prior findings, firmly show that DDQ possesses anti-aging, anti-amyloid-beta and anti-p-tau properties, making it a promising molecule for reducing age-related, amyloid-beta and p-tau-induced synaptic and mitochondrial toxicities in AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
13.
Cancers (Basel) ; 13(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34944997

RESUMEN

Her2-amplified breast cancers resistant to available Her2-targeted therapeutics continue to be a challenge in breast cancer therapy. Dox is the mainstay of chemotherapy of all types of breast cancer, but its usefulness is limited by cumulative cardiotoxicity. Because oxidative stress caused by dox generates the pro-apoptotic Ω-6 PUFA metabolite 4-hydroxynonenal (4-HNE), we surmised that Ω-6 PUFAs would increase the effectiveness of dox chemotherapy. Since the mercapturic acid pathway enzyme RALBP1 (also known as RLIP76 or Rlip) that limits cellular accumulation of 4-HNE also mediates dox resistance, the combination of Ω-6 PUFAs and Rlip depletion could synergistically improve the efficacy of dox. Thus, we studied the effects of the Ω-6 PUFA arachidonic acid (AA) and Rlip knockdown on the antineoplastic activity of dox towards Her2-amplified breast cancer cell lines SK-BR-3, which is sensitive to Her2 inhibitors, and AU565, which is resistant. AA increased lipid peroxidation, 4-HNE generation, apoptosis, cellular dox concentration and dox cytotoxicity in both cell lines while sparing cultured immortalized cardiomyocyte cells. The known functions of Rlip including clathrin-dependent endocytosis and dox efflux were inhibited by AA. Our results support a model in which 4-HNE generated by AA overwhelms the capacity of Rlip to defend against apoptosis caused by dox or 4-HNE. We propose that Ω-6 PUFA supplementation could improve the efficacy of dox or Rlip inhibitors for treating Her2-amplified breast cancer.

14.
Cells ; 10(11)2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34831336

RESUMEN

The purpose of our study is to understand the role of the RALBP1 gene in oxidative stress (OS), mitochondrial dysfunction and cognition in Alzheimer's disease (AD) pathogenesis. The RALPB1 gene encodes the 76 kDa protein RLIP76 (Rlip). Rlip functions as a stress-responsive/protective transporter of glutathione conjugates (GS-E) and xenobiotic toxins. We hypothesized that Rlip may play an important role in maintaining cognitive function. The aim of this study is to determine whether Rlip deficiency in mice is associated with AD-like cognitive and mitochondrial dysfunction. Brain tissue obtained from cohorts of wildtype (WT) and Rlip+/- mice were analyzed for OS markers, expression of genes that regulate mitochondrial fission/fusion, and synaptic integrity. We also examined mitochondrial ultrastructure in brains obtained from these mice and further analyzed the impact of Rlip deficiency on gene networks of AD, aging, stress response, mitochondrial function, and CREB signaling. Our studies revealed a significant increase in the levels of OS markers and alterations in the expression of genes and proteins involved in mitochondrial biogenesis, dynamics and synapses in brain tissues from these mice. Furthermore, we compared the cognitive function of WT and Rlip+/- mice. Behavioral, basic motor and sensory function tests in Rlip+/- mice revealed cognitive decline, similar to AD. Gene network analysis indicated dysregulation of stress-activated gene expression, mitochondrial function and CREB signaling genes in the Rlip+/- mouse brain. Our results suggest that Rlip deficiency-associated increases in OS and mitochondrial dysfunction could contribute to the development or progression of OS-related AD processes.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Proteínas Activadoras de GTPasa/metabolismo , Mitocondrias/patología , Estrés Oxidativo , Animales , Antioxidantes/metabolismo , Conducta Animal , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Proteínas Activadoras de GTPasa/deficiencia , Regulación de la Expresión Génica , Ratones , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Dinámicas Mitocondriales/genética , Modelos Biológicos , Biogénesis de Organelos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Sinapsis/genética
15.
Cancers (Basel) ; 13(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34283045

RESUMEN

We recently reported that loss of one or both alleles of Ralbp1, which encodes the stress-protective protein RLIP76 (Rlip), exerts a strong dominant negative effect on both the inherent cancer susceptibility and the chemically inducible cancer susceptibility of mice lacking one or both alleles of the tumor suppressor p53. In this paper, we examined whether congenital Rlip deficiency could prevent genetically-driven breast cancer in two transgenic mouse models: the MMTV-PyVT model, which expresses the polyomavirus middle T antigen (PyVT) under control of the mouse mammary tumor virus promoter (MMTV) and the MMTV-Erbb2 model which expresses MMTV-driven erythroblastic leukemia viral oncogene homolog 2 (Erbb2, HER2/Neu) and frequently acquires p53 mutations. We found that loss of either one or two Rlip alleles had a suppressive effect on carcinogenesis in Erbb2 over-expressing mice. Interestingly, Rlip deficiency did not affect tumor growth but significantly reduced the lung metastatic burden of breast cancer in the viral PyVT model, which does not depend on either Ras or loss of p53. Furthermore, spontaneous tumors of MMTV-PyVT/Rlip+/+ mice showed no regression following Rlip knockdown. Finally, mice lacking one or both Rlip alleles differentially expressed markers for apoptotic signaling, proliferation, angiogenesis, and cell cycling in PyVT and Erbb2 breast tumors. Our results support the efficacy of Rlip depletion in suppressing p53 inactivated cancers, and our findings may yield novel methods for prevention or treatment of cancer in patients with HER2 mutations or tumor HER2 expression.

16.
Mitochondrion ; 59: 17-29, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33839321

RESUMEN

The purpose of our study is to determine the protective effects of the newly discovered molecule DDQ (diethyl (3,4-dihydroxyphenethylamino)(quinolin-4-yl) methylphosphonate) against mutant APP and amyloid-beta (Aß) in Alzheimer's disease (AD). To achieve our objective, we used a well characterized amyloid-beta precursor protein (APP) transgenic mouse model (Tg2576 strain). We administered DDQ, a 20 mg/kg body weight (previously determined in our laboratory) intra-peritoneally 3-times per week for 2 months, starting at the beginning of the 12th month, until the end of the 14th month. Further, using biochemical and molecular methods, we measured the levels of DDQ in the blood, skeletal muscle, and brain. Using Morris Water Maze, Y-maze, open field, and rotarod tests, we assessed cognitive behavior after DDQ treatment. Using q-RT-PCR, immunoblotting, transmission electron microscopy, and Golgi-cox staining methods, we studied mRNA and protein levels of longevity genes SIRTUINS, mitochondrial number & length, and dendritic spine number and length in DDQ-treated APP mice. Our extensive pharmacodynamics analysis revealed high peak levels of DDQ in the skeletal muscle, followed by serum and brain. Our behavioral analysis of rotarod, open field, Y-maze, and Morris Water Maze tests revealed that DDQ ameliorated cognitive decline (Morris Water Maze), improved working memory (Y-Maze), exploratory behavior (open field), and motor coordination (rotarod) in DDQ-treated APP mice. Interestingly, longevity genes SIRTUINS, mitochondrial biogenesis, fusion, mitophagy, autophagy and synaptic genes were upregulated in DDQ-treated APP mice relative to untreated APP mice. Dendritic spines and the quality mitochondria were significantly increased in DDQ treated APP mice. Current study findings, together with our previous study observations, strongly suggest that DDQ has anti-aging, and anti-amyloid-beta effects and a promising molecule to reduce age-and amyloid-beta-induced toxicities in AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/psicología , Precursor de Proteína beta-Amiloide/efectos de los fármacos , Animales , Cognición/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Inyecciones Intraperitoneales , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Mutación , Sirtuinas/genética , Sirtuinas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacocinética
17.
Mol Neurobiol ; 58(7): 3588-3600, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33768469

RESUMEN

The purpose of our study is to determine the protective effects of the newly discovered molecule DDQ (diethyl (3,4-dihydroxyphenethylamino)(quinolin-4-yl) methylphosphonate) against aging in an in vitro, mouse primary hippocampal neurons, HT22 cells, and in vivo, 24-month-old C57BL6/J mice. Using biochemical and molecular methods, we studied the half-life period in the blood and brain, optimized the dose, determined dose-response (using 1, 5, 10, 20, and 50 mg/kg body weight), and measured the levels of blood, skeletal muscle, and brain. Using Morris water maze (cognitive behavior), q-RT-PCR (mRNA and protein levels of longevity genes SIRTUINS), transmission electron microscopy (mitochondrial number and length), and Golgi-Cox staining (dendritic spine number and length) were assessed in 24-month-old C57BL6/J mice. Out of 5 different doses of DDQ, the 20 mg/kg body weight dose showed the strongest protective effects against aging in C57BL6/J mice. The half-life time of DDQ is 20 h in the serum and 12 h in the brain. Our extensive pharmacodynamics analysis revealed high peak levels of DDQ in the skeletal muscle, followed by serum and brain. Using mouse primary hippocampal (HT22) neurons and 24-month-old C57BL6/J mice, we tested the protective effects of DDQ. Interestingly, longevity genes SIRTUINS were upregulated in DDQ-treated HT22 cells, and DDQ-treated aged wild-type mice relative to DDQ-untreated cells and untreated aged control mice. Dendritic spines and the quality of mitochondria were significantly increased in DDQ-treated aged mice. Current study findings, together with our previous study observations, strongly suggest that DDQ has anti-aging effects and warrants further investigations of anti-inflammatory, anti-DNA damage, and telomerase activity studies.


Asunto(s)
Envejecimiento/efectos de los fármacos , Antioxidantes/farmacología , Encéfalo/efectos de los fármacos , Dopaminérgicos/farmacología , Envejecimiento/metabolismo , Animales , Antioxidantes/química , Encéfalo/metabolismo , Línea Celular , Dopaminérgicos/química , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo
18.
Aging Cell ; 19(11): e13261, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33067900

RESUMEN

Age-associated mitochondrial dysfunction and oxidative damage are primary causes for multiple health problems including sarcopenia and cardiovascular disease (CVD). Though the role of Nrf2, a transcription factor that regulates cytoprotective gene expression, in myopathy remains poorly defined, it has shown beneficial properties in both sarcopenia and CVD. Sulforaphane (SFN), a natural compound Nrf2-related activator of cytoprotective genes, provides protection in several disease states including CVD and is in various stages of clinical trials, from cancer prevention to reducing insulin resistance. This study aimed to determine whether SFN may prevent age-related loss of function in the heart and skeletal muscle. Cohorts of 2-month-old and 21- to 22-month-old mice were administered regular rodent diet or diet supplemented with SFN for 12 weeks. At the completion of the study, skeletal muscle and heart function, mitochondrial function, and Nrf2 activity were measured. Our studies revealed a significant drop in Nrf2 activity and mitochondrial functions, together with a loss of skeletal muscle and cardiac function in the old control mice compared to the younger age group. In the old mice, SFN restored Nrf2 activity, mitochondrial function, cardiac function, exercise capacity, glucose tolerance, and activation/differentiation of skeletal muscle satellite cells. Our results suggest that the age-associated decline in Nrf2 signaling activity and the associated mitochondrial dysfunction might be implicated in the development of age-related disease processes. Therefore, the restoration of Nrf2 activity and endogenous cytoprotective mechanisms by SFN may be a safe and effective strategy to protect against muscle and heart dysfunction due to aging.


Asunto(s)
Isotiocianatos/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Sulfóxidos/uso terapéutico , Animales , Isotiocianatos/farmacología , Masculino , Ratones , Estrés Oxidativo , Sarcopenia/patología , Transducción de Señal , Sulfóxidos/farmacología
19.
Microorganisms ; 8(10)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003447

RESUMEN

Dietary factors modulate interactions between the microbiome, metabolome, and immune system. Sulforaphane (SFN) exerts effects on aging, cancer prevention and reducing insulin resistance. This study investigated effects of SFN on the gut microbiome and metabolome in old mouse model compared with young mice. Young (6-8 weeks) and old (21-22 months) male C57BL/6J mice were provided regular rodent chow ± SFN for 2 months. We collected fecal samples before and after SFN administration and profiled the microbiome and metabolome. Multi-omics datasets were analyzed individually and integrated to investigate the relationship between SFN diet, the gut microbiome, and metabolome. The SFN diet restored the gut microbiome in old mice to mimic that in young mice, enriching bacteria known to be associated with an improved intestinal barrier function and the production of anti-inflammatory compounds. The tricarboxylic acid cycle decreased and amino acid metabolism-related pathways increased. Integration of multi-omic datasets revealed SFN diet-induced metabolite biomarkers in old mice associated principally with the genera, Oscillospira, Ruminococcus, and Allobaculum. Collectively, our results support a hypothesis that SFN diet exerts anti-aging effects in part by influencing the gut microbiome and metabolome. Modulating the gut microbiome by SFN may have the potential to promote healthier aging.

20.
Cancers (Basel) ; 12(6)2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32498332

RESUMEN

RLIP76 (RAL-binding protein-1, Rlip) is a stress-protective mercapturic-acid-pathway transporter protein that also plays a key role in regulating clathrin-dependent endocytosis as a Ral effector. Targeted inhibition or depletion of Rlip causes regression of xenografts of many cancers and is capable of abrogating tumor formation in p53-null mice. This is associated with the reversion of the abnormal methylomic profile of p53-null mice to wild-type. In a query of The Cancer Genome Atlas (TCGA) databases, we found that Rlip expression was associated with poor survival and with significant differences in the frequencies of PIK3CA mutation, MYC amplification, and CDKN2A/B deletion, which were the most commonly mutated, amplified, and deleted genes, respectively, among TCGA breast cancer patients. We conducted the present study to further examine the effects of Rlip inhibition and to evaluate the in vitro and in vivo efficacy in breast cancer. Using immunogold electron microscopy, we found that plasma-membrane Rlip was accessible to cell-surface antibodies in the MCF7 (ER+) breast cancer cell line. Rlip depletion resulted in decreased survival of MCF7 and MDA-MB-231 cells and increased terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positivity and DNA laddering, indicating apoptotic cell death. Additionally, in vitro knockdown of Rlip inhibited EGF endocytosis and WNT/MAPK signaling. Xenograft studies in nude mice showed regression of breast cancer via antisense-mediated depletion of Rlip mRNA as well as by anti-Rlip antibody. Finally, knockdown of Rlip by antisense locked nucleic acid oligonucleotides increased markers for apoptotic signaling and decreased markers for proliferation, angiogenesis, and cell cycling in MCF7 and MDA-MB-231luc xenografts. Our findings validate Rlip as an attractive target in breast cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA