Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Am Chem Soc ; 146(20): 13714-13718, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38723156

RESUMEN

We report the magnetic behavior of the hybrid perovskites [Gua]Mn1-xFe2x/3□x/3(HCOO)3 (0 ≤ x ≤ 0.88), showing that vacancy ordering drives bulk ferrimagnetism for x > 0.6. The behavior is rationalized in terms of a simple microscopic model of percolation-induced ferrimagnetism. Monte Carlo simulations driven by this model reproduce the experimental dependence of magnetic susceptibility on x and show that, at intermediate compositions, domains of short-range vacancy order lead to the emergence of local magnetization. Our results open up a new avenue for the design of multiferroic hybrid perovskites.

2.
Chem Sci ; 15(9): 3155-3164, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38425511

RESUMEN

Jahn-Teller (JT) distorted CuII-containing compounds often display interesting structural and functional behaviour upon compression. We use high-pressure X-ray and neutron diffraction to investigate four JT-distorted Prussian blue analogues: Cu[Co(CN)6]0.67, CuPt(CN)6, and ACuCo(CN)6 (A = Rb, Cs), where the first two were studied in both their hydrated and dehydrated forms. All compounds are less compressible than the JT-inactive MnII-based counterparts, indicating a coupling between the electronic and mechanical properties. The effect is particularly strong for Cu[Co(CN)6]0.67, where the local JT distortions are uncorrelated (so-called orbital disorder). This sample amorphises at 0.5 GPa when dehydrated. CuPt(CN)6 behaves similarly to the MnII-analogues, with phase transitions at around 1 GPa and low sensitivity to water. For ACuCo(CN)6, the JT distortions reduce the propensity for phase transitions, although RbCuCo(CN)6 transitions to a new phase (P2/m) around 3 GPa. Our results have a bearing on both the topical Prussian blue analogues and the wider field of flexible frameworks.

3.
Adv Mater ; 36(15): e2304832, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37669645

RESUMEN

Metal-organic frameworks (MOFs) are a rapidly growing class of materials that offer great promise in various applications. However, the synthesis remains challenging: for example, a range of crystal structures can often be accessed from the same building blocks, which complicates the phase selectivity. Likewise, the high sensitivity to slight changes in synthesis conditions may cause reproducibility issues. This is crucial, as it hampers the research and commercialization of affected MOFs. Here, it presents the first-ever interlaboratory study of the synthetic reproducibility of two Zr-porphyrin MOFs, PCN-222 and PCN-224, to investigate the scope of this problem. For PCN-222, only one sample out of ten was phase pure and of the correct symmetry, while for PCN-224, three are phase pure, although none of these show the spatial linker order characteristic of PCN-224. Instead, these samples resemble dPCN-224 (disordered PCN-224), which has recently been reported. The variability in thermal behavior, defect content, and surface area of the synthesised samples are also studied. The results have important ramifications for field of metal-organic frameworks and their crystallization, by highlighting the synthetic challenges associated with a multi-variable synthesis space and flat energy landscapes characteristic of MOFs.

4.
Phys Chem Chem Phys ; 24(46): 28444-28456, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36399064

RESUMEN

X-ray characterisation methods have undoubtedly enabled cutting-edge advances in all aspects of materials research. Despite the enormous breadth of information that can be extracted from these techniques, the challenge of radiation-induced sample change and damage remains prevalent. This is largely due to the emergence of modern, high-intensity X-ray source technologies and the growing potential to carry out more complex, longer duration in situ or in operando studies. The tunability of synchrotron beamlines enables the routine application of photon energy-dependent experiments. This work explores the structural stability of [Rh(COD)Cl]2, a widely used catalyst and precursor in the chemical industry, across a range of beamline parameters that target X-ray energies of 8 keV, 15 keV, 18 keV and 25 keV, on a powder X-ray diffraction synchrotron beamline at room temperature. Structural changes are discussed with respect to absorbed X-ray dose at each experimental setting associated with the respective photon energy. In addition, the X-ray radiation hardness of the catalyst is discussed, by utilising the diffraction data collected at the different energies to determine a dose limit, which is often considered in protein crystallography and typically overlooked in small molecule crystallography. This work not only gives fundamental insight into how damage manifests in this organometallic catalyst, but will encourage careful consideration of experimental X-ray parameters before conducting diffraction on similar radiation-sensitive organometallic materials.


Asunto(s)
Fotones , Sincrotrones , Rayos X , Cristalografía , Difracción de Rayos X
5.
Phys Chem Chem Phys ; 24(41): 25072-25076, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36227089

RESUMEN

The Prussian blue analogue CsMnCo(CN)6 is studied using powder X-ray and neutron diffraction under variable temperature, pressure, and X-ray exposure. It retains cubic F4̄3m symmetry in the range 85-500 K with minimal thermal expansion, whereas a phase transition to P4̄n2 occurs at ∼2 GPa, driven by octahedral tilting. A small lattice contraction occurs upon increased X-ray dose. Comparisons with related systems indicate that the CsI ions decrease the thermal expansion and suppress the likelihood of phase transformations. The results improve the understanding of the stimuli-responsive behaviour of coordination polymers.

6.
Mater Horiz ; 8(9): 2444-2450, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34870297

RESUMEN

Molecular perovskites, i.e. ABX3 coordination polymers with a perovskite structure, are a chemically diverse material platform for studying fundamental and applied materials properties such as barocalorics and improper ferroelectrics. Compared to inorganic perovskites, the use of molecular ions on the A- and X-site of molecular perovskites leads to new geometric and structural degrees of freedom. In this work we introduce the concept of tilt and shift polymorphism, categorising irreversible perovskite-to-perovskite phase transitions in molecular perovskites. As a model example we study the new molecular perovskite series [(nPr)3(CH3)N]M(C2N3)3 with M = Mn2+, Co2+, Ni2+, and nPr = n-propyl, where different polymorphs crystallise in the perovskite structure but with different tilt systems depending on the synthetic conditions. Tilt and shift polymorphism is a direct ramification of the use of molecular building units in molecular perovskites and as such is unknown for inorganic perovskites. Given the role of polymorphism in materials science, medicine and mineralogy, and more generally the relation between physicochemical properties and structure, the concept introduced herein represents an important step in classifying the crystal chemistry of molecular perovskites and in maturing the field.


Asunto(s)
Ciencia de los Materiales , Compuestos de Calcio , Óxidos , Titanio
7.
Mater Horiz ; 8(5): 1446-1453, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34846452

RESUMEN

Cadmium cyanide, Cd(CN)2, is a flexible coordination polymer best studied for its strong and isotropic negative thermal expansion (NTE) effect. Here we show that this NTE is actually X-ray-exposure dependent: Cd(CN)2 contracts not only on heating but also on irradiation by X-rays. This behaviour contrasts that observed in other beam-sensitive materials, for which X-ray exposure drives lattice expansion. We call this effect 'negative X-ray expansion' (NXE) and suggest its origin involves an interaction between X-rays and cyanide 'flips'; in particular, we rule out local heating as a possible mechanism. Irradiation also affects the nature of a low-temperature phase transition. Our analysis resolves discrepancies in NTE coefficients reported previously on the basis of X-ray diffraction measurements, and we establish the 'true' NTE behaviour of Cd(CN)2 across the temperature range 150-750 K. The interplay between irradiation and mechanical response in Cd(CN)2 highlights the potential for exploiting X-ray exposure in the design of functional materials.

9.
Chem Sci ; 12(12): 4494-4502, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-34163714

RESUMEN

Control over the spatial distribution of components in metal-organic frameworks has potential to unlock improved performance and new behaviour in separations, sensing and catalysis. We report an unprecedented single-step synthesis of multi-component metal-organic framework (MOF) nanoparticles based on the canonical ZIF-8 (Zn) system and its Cd analogue, which form with a core-shell structure whose internal interface can be systematically tuned. We use scanning transmission electron microscopy, X-ray energy dispersive spectroscopy and a new composition gradient model to fit high-resolution X-ray diffraction data to show how core-shell composition and interface characteristics are intricately controlled by synthesis temperature and reaction composition. Particle formation is investigated by in situ X-ray diffraction, which reveals that the spatial distribution of components evolves with time and is determined by the interplay of phase stability, crystallisation kinetics and diffusion. This work opens up new possibilities for the control and characterisation of functionality, component distribution and interfaces in MOF-based materials.

10.
J Am Chem Soc ; 143(9): 3544-3554, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33629831

RESUMEN

The vast compositional space of Prussian blue analogues (PBAs), formula AxM[M'(CN)6]y·nH2O, allows for a diverse range of functionality. Yet, the interplay between composition and physical properties-e.g., flexibility and propensity for phase transitions-is still largely unknown, despite its fundamental and industrial relevance. Here we use variable-pressure X-ray and neutron diffraction to explore how key structural features, i.e., defects, hydration, and composition, influence the compressibility and phase behavior of PBAs. Defects enhance the flexibility, manifesting as a remarkably low bulk modulus (B0 ≈ 6 GPa) for defective PBAs. Interstitial water increases B0 and enables a pressure-induced phase transition in defective systems. Conversely, hydration does not alter the compressibility of stoichiometric MnPt(CN)6, but changes the high-pressure phase transitions, suggesting an interplay between low-energy distortions. AMnCo(CN)6 (AI = Rb, Cs) transition from F4̅3m to P4̅n2 upon compression due to octahedral tilting, and the critical pressure can be tuned by the A-site cation. At 1 GPa, the symmetry of Rb0.87Mn[Co(CN)6]0.91 is further lowered to the polar space group Pn by an improper ferroelectric mechanism. These fundamental insights aim to facilitate the rational design of PBAs for applications within a wide range of fields.

11.
Acc Chem Res ; 54(5): 1288-1297, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33600147

RESUMEN

ConspectusThe structural degrees of freedom of a solid material are the various distortions most straightforwardly activated by external stimuli such as temperature, pressure, or adsorption. One of the most successful design strategies in materials chemistry involves controlling these individual distortions to produce useful collective functional responses. In a ferroelectric such as lead titanate, for example, the key degree of freedom involves asymmetric displacements of Pb2+ and Ti4+ cations; it is by coupling these together that the system as a whole interacts with external electric fields. Collective rotations of the polyhedral units in oxide ceramics are another commonly exploited distortion, driving anomalous behavior such as negative thermal expansion-the counterintuitive phenomenon of volume contraction on heating. An exciting development in the field has been to take advantage of the interplay between different distortion types: generating polarization by combining two different polyhedral rotations, for example. In this way, degrees of freedom act as geometric "elements" that can themselves be combined to engineer materials with new and interesting properties. Just as the discovery of new chemical elements quite obviously diversified chemical space, we might expect that identifying new and different types of structural degrees of freedom to be an important strategy for developing new kinds of functional materials. In this context, the broad family of molecular frameworks is emerging as an extraordinarily fertile source of new and unanticipated distortion types, the vast majority of which have no parallel in the established families of conventional solid-state chemistry.Framework materials are solids whose structures are assembled from two fundamental components: nodes and linkers. Quite simply, linkers join the nodes together to form scaffolding-like networks that extend from the atomic to the macroscopic scale. These structures usually contain cavities, which can also accommodate additional ions for charge balance. In the well-established systems-such as lead titanate-node, linker, and extra-framework ions are all individual atoms (Ti, O, and Pb, respectively). But in molecular frameworks, at least one of these components is a molecule.In this Account, we survey the unconventional degrees of freedom introduced through the simple act of replacing atoms by molecules. Our motivation is to understand the role these new distortions play (or might be expected to play) in different materials properties. The various degrees of freedom themselves-unconventional rotational, translational, orientational, and conformational states-are summarized and described in the context of relevant experimental examples. The much-improved prospect for generating emergent functionalities by combining these new distortion types is then discussed. We highlight a number of directions for future research-including the design and application of hierarchically structured phases of matter intermediate to solids and liquid crystals-which serve to highlight the extraordinary possibilities for this nascent field.

12.
Dalton Trans ; 49(31): 10740-10744, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32747889

RESUMEN

ABX3 perovskite coordination networks are a rapidly growing sub-class of crystalline coordination networks. At present, synthetic efforts in the field are dominated by the use of commercially available building blocks, leaving the potential for tuning properties via targeted compositional changes largely untouched. Here we apply a rational crystal engineering approach, using 6-azaspiro[5.5]undecane ([ASU]+) as A-site cation for the synthesis of the polar perovskite [ASU][Cd(C2N3)3].

13.
Dalton Trans ; 49(37): 12940-12944, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32662482

RESUMEN

The spin state of the Prussian blue analogue FeIIPtIV(CN)6 is investigated in response to temperature, pressure, and X-ray irradiation. While cooling to 10 K maintains the high-spin state of FeII, compression at ambient temperature induces a first-order spin-crossover (SCO) transition with a small hysteresis loop (p↑ = 0.8 GPa, p↓ = 0.6 GPa). In addition, the high-spin to low-spin transition can be initiated at lower pressure through increased X-ray irradiation. Our study highlights a cooperative SCO with moderate pressure in a porous Prussian blue analogue.

14.
Nature ; 578(7794): 256-260, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32051599

RESUMEN

Prussian blue analogues (PBAs) are a diverse family of microporous inorganic solids, known for their gas storage ability1, metal-ion immobilization2, proton conduction3, and stimuli-dependent magnetic4,5, electronic6 and optical7 properties. This family of materials includes the double-metal cyanide catalysts8,9 and the hexacyanoferrate/hexacyanomanganate battery materials10,11. Central to the various physical properties of PBAs is their ability to reversibly transport mass, a process enabled by structural vacancies. Conventionally presumed to be random12,13, vacancy arrangements are crucial because they control micropore-network characteristics, and hence the diffusivity and adsorption profiles14,15. The long-standing obstacle to characterizing the vacancy networks of PBAs is the inaccessibility of single crystals16. Here we report the growth of single crystals of various PBAs and the measurement and interpretation of their X-ray diffuse scattering patterns. We identify a diversity of non-random vacancy arrangements that is hidden from conventional crystallographic powder analysis. Moreover, we explain this unexpected phase complexity in terms of a simple microscopic model that is based on local rules of electroneutrality and centrosymmetry. The hidden phase boundaries that emerge demarcate vacancy-network polymorphs with very different micropore characteristics. Our results establish a foundation for correlated defect engineering in PBAs as a means of controlling storage capacity, anisotropy and transport efficiency.

15.
J Am Chem Soc ; 141(45): 17978-17982, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31663731

RESUMEN

We report the synthesis and structural characterization of the ABX3 perovskite frameworks [C(NH2)3]Mn1-x2+(Fe2x/33+,□x/3)(HCOO)3 (□ = B-site vacancy). For large x, the vacancies order, lowering the crystal symmetry. This system establishes B-site vacancies as a new type of defect in formate perovskites, with important chemical, structural, and functional implications. Monte Carlo simulations driven by nearest-neighbor vacancy repulsions show checkerboard vacancy order to emerge for x > 0.6, in accord with experiment.

16.
Chem Commun (Camb) ; 55(69): 10230-10233, 2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31380536

RESUMEN

The structure and thermal expansion of the Prussian blue analogue RbCuCo(CN)6 has been determined via neutron and X-ray powder diffraction. The system crystallises in Cccm and harbours three coexisting distortions relative to the parent Fm3[combining macron]m structure, which leads to anisotropic thermal expansion with a near-zero component in one direction. The difficulties associated with determining octahedral tilt systems in Prussian blue analogues and related double molecular perovskites are discussed.

17.
Dalton Trans ; 48(5): 1647-1655, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30548036

RESUMEN

We report a high-pressure crystallographic study of four hydrated Prussian blue analogues: M[Pt(CN)6] and M[Co(CN)6]0.67 (M = Mn2+, Cu2+) in the range 0-3 GPa. Mn[Co(CN)6]0.67 was studied by single-crystal X-ray diffraction, whereas the other systems were only available in polycrystalline form. The Mn-containing compounds undergo pressure-induced phase transitions from Fm3[combining macron]m to R3[combining macron] at ∼1.0-1.5 GPa driven by cooperative tilting of the octahedral units. No phase transition was found for the orbitally disordered Cu[Co(CN)6]0.67 up to 3 GPa. Mn[Co(CN)6]0.67 is significantly softer than the other samples, with a bulk modulus of ∼14 GPa compared to ∼35 GPa of the powdered samples. The discrepant pressure responses are discussed in terms of the presence of structural defects, Jahn-Teller distortions, and hydration. The implications for the development of polar systems are reviewed based upon our high-pressure study.

18.
Nat Commun ; 9(1): 2380, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29915202

RESUMEN

The central goal of crystal engineering is to control material function via rational design of structure. A particularly successful realisation of this paradigm is hybrid improper ferroelectricity in layered perovskite materials, where layering and cooperative octahedral tilts combine to break inversion symmetry. However, in the parent family of inorganic ABX3 perovskites, symmetry prevents hybrid coupling to polar distortions. Here, we use group-theoretical analysis to uncover a profound enhancement of the number of improper ferroelectric coupling schemes available to molecular perovskites. This enhancement arises because molecular substitution diversifies the range of distortions possible. Not only do our insights rationalise the emergence of polarisation in previously studied materials, but we identify the fundamental importance of molecular degrees of freedom that are straightforwardly controlled from a synthetic viewpoint. We envisage that the crystal design principles we develop here will enable targeted synthesis of a large family of new acentric functional materials.

19.
Chem Commun (Camb) ; 53(81): 11233-11236, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28956886

RESUMEN

We report the synthesis and structural characterisation of three mixed-metal formate perovskite families [C(NH2)3]CuxM1-x(HCOO)3 (M = Mn, Zn, Mg). Using a combination of infrared spectroscopy, non-negative matrix factorization, and reverse Monte Carlo refinement, we show that the Mn- and Zn-containing compounds support compositional nanodomains resembling the polar nanoregions of conventional relaxor ferroelectrics. The M = Mg family exhibits a miscibility gap that we suggest reflects the limiting behaviour of nanodomain formation.

20.
Phys Chem Chem Phys ; 18(46): 31881-31894, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27841402

RESUMEN

We introduce columnar shifts-collective rigid-body translations-as a structural degree of freedom relevant to the phase behaviour of molecular perovskites ABX3 (X = molecular anion). Like the well-known octahedral tilts of conventional perovskites, shifts also preserve the octahedral coordination geometry of the B-site cation in molecular perovskites, and so are predisposed to influencing the low-energy dynamics and displacive phase transitions of these topical systems. We present a qualitative overview of the interplay between shift activation and crystal symmetry breaking, and introduce a generalised terminology to allow characterisation of simple shift distortions, drawing analogy to the "Glazer notation" for octahedral tilts. We apply our approach to the interpretation of a representative selection of azide and formate perovskite structures, and discuss the implications for functional exploitation of shift degrees of freedom in negative thermal expansion materials and hybrid ferroelectrics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA