Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Biomol Struct Dyn ; 42(3): 1368-1380, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37191027

RESUMEN

A revival interest has been given to natural products as sources of phytocompounds to be used as alternative treatment against infectious diseases. In this context, we aimed to investigate the antimicrobial potential of Ziziphus honey (ZH) against twelve clinical bacterial strains and several yeasts and molds using in vitro and computational approaches. The well-diffusion assay revealed that ZH was able to induce growth inhibition of most Gram-positive and Gram-negative bacteria. The high mean growth inhibition zone (mGIZ) was recorded in E. coli (Clinical strain, 217), S. aureus followed by E. coli ATCC 10536 (mGIZ values: 41.00 ± 1 mm, 40.67 ± 0.57 mm, and 34.67 ± 0.57 mm, respectively). The minimal bactericidal concentrations (MBCs) and minimal fungicidal concentration values (MFCs) from approximately 266.33 mg/mL to over 532.65 mg/mL. Molecular docking results revealed that the identified compounds maltose, 2-furoic acid, isopropyl ester, 2,4-imidazolidinedione, 5-(2-methylpropyl)-(S)- and 3,4,5-trihydroxytoluene, S-Methyl-L-Cysteine, 2-Furancarboxylic acid, L-Valine-N-ethoxycarbonyl, Hexanoic acid, 3,5,5-trimethyl-, Methyl-beta-D-thiogalactoside, gamma-Sitosterol, d-Mannose, 4-O-Methylmannose, 2,4-Imidazolidinedione, 5-(2-methylpropyl)- (S) were found to have good affinity for targeted receptor, respectively. Through a 100-ns dynamic simulation research, binding interactions and stability between promising phytochemicals and the active residues of the studied enzymes were confirmed. The ADMET profiling of all identified compounds revealed that most of them could be qualified as biologically active with good absorption and permeation. Overall, the results highlighted the efficiency of ZH against the tested clinical pathogenic strains. The antimicrobial potential and the potency displayed by the identified compounds could imply their further pharmacological applications.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antiinfecciosos , Miel , Ziziphus , Antibacterianos/farmacología , Staphylococcus aureus , Cromatografía de Gases y Espectrometría de Masas , Bacterias Gramnegativas , Escherichia coli , Simulación del Acoplamiento Molecular , Bacterias Grampositivas , Antiinfecciosos/farmacología , Antiinfecciosos/química , Fitoquímicos/farmacología , Fitoquímicos/química
2.
Molecules ; 28(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38067422

RESUMEN

Illicium verum, or star anise, has many uses ranging from culinary to religious. It has been used in the food industry since ancient times. The main purpose of this study was to determine the chemical composition, antibacterial, antibiofilm, and anti-quorum sensing activities of the essential oil (EO) obtained via hydro-distillation of the aerial parts of Illicium verum. Twenty-four components were identified representing 92.55% of the analyzed essential oil. (E)-anethole (83.68%), limonene (3.19%), and α-pinene (0.71%) were the main constituents of I. verum EO. The results show that the obtained EO was effective against eight bacterial strains to different degrees. Concerning the antibiofilm activity, trans-anethole was more effective against biofilm formation than the essential oil when tested using sub-inhibitory concentrations. The results of anti-swarming activity tested against P. aeruginosa PAO1 revealed that I. verum EO possesses more potent inhibitory effects on the swarming behavior of PAO1 when compared to trans-anethole, with the percentage reaching 38% at a concentration of 100 µg/mL. The ADME profiling of the identified phytocompounds confirmed their important pharmacokinetic and drug-likeness properties. The in silico study using a molecular docking approach revealed a high binding score between the identified compounds with known target enzymes involved in antibacterial and anti-quorum sensing (QS) activities. Overall, the obtained results suggest I. verum EO to be a potentially good antimicrobial agent to prevent food contamination with foodborne pathogenic bacteria.


Asunto(s)
Illicium , Aceites Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/química , Percepción de Quorum , Illicium/química , Simulación del Acoplamiento Molecular , Biopelículas , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Pseudomonas aeruginosa
3.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38139796

RESUMEN

Citrus, which belongs to the Rutaceae family, is a very widespread genus in the Mediterranean Basin. In Tunisia, various parts of these spontaneous or cultivated plants are used in common dishes or in traditional medicine. The purpose of this work was to investigate C. limon and C. paradisi essential oil (EO). The samples were studied for their chemical composition using SPME/MS, as well as their antibacterial and antifungal activities. Prothrombin time (PT) and activated partial thromboplastin time (aPTT) methods were used to evaluate the anticoagulant potentialities. The obtained results show that both essential oils are rich in monoterpenes hydrocarbons, whereby limonene is the main compound in C. paradisi EO (86.8%) and C. limon EO (60.6%). Moreover, C. paradisi EO contains ß-pinene (13.3%), sabinene (2.2%) and α-pinene (2.1%). The antibacterial assay of the essential oils showed important bactericidal and fungicidal effects against all strains tested. In fact, the MICs values of C. limon EO ranged from 0.625 to 2.5 mg/mL against all Gram-positive and Gram-negative bacteria, and from 6.25 to 12.5 mg/mL for Candida spp. strains, while C. paradisi EO was more active against all bacteria with low MICs values ranging from 0.192 to 0.786 mg/mL, and about 1.5 mg/mL against Candida species. Both tested Citrus EOs exhibited interesting anticoagulant activities as compared to heparin. The molecular docking approach was used to study the binding affinity and molecular interactions of all identified compounds with active sites of cytidine deaminase from Klebsiella pneumoniae (PDB: 6K63) and the C (30) carotenoid dehydrosqualene synthase from Staphylococcus aureus (PDB: 2ZCQ). The obtained results show that limonene had the highest binding score of -4.6 kcal.mol-1 with 6K63 enzyme, and -6.7 kcal.mol-1 with 2ZCQ receptor. The ADME profiling of the major constituents confirmed their important pharmacokinetic and drug-like properties. Hence, the obtained results highlight the potential use of both C. limon and C. paradisi essential oils as sources of bioactive compounds with antibacterial, antifungal, and anti-coagulant activities.

4.
Iran J Public Health ; 52(8): 1555-1564, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37744540

RESUMEN

Over the last decade, we were facing medical struggle by the emergence of multi-resistant bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA). MRSA infections are still causing a growing global concern due to the rapid adaptive multidrug resistance to conventional antibiotics in human, community and veterinary medicine. Here we provide an overview about MRSA epidemiology, transmission and alternative potential treatments particularly new discovered phytochemicals with biological activity. In this narrative review, bibliographic data was collected from literature search databases: Google Scholar, web of science and PubMed/MEDLINE during recent years (2016 to 2021). MRSA is responsible of wide spectrum life threatening infections such us septicemia, endocarditis, and wound infections. It has epidemic potential in hospitals, that is responsible of most nosocomial infections leading to mortality and constitute a real burden for the healthcare systems. Effective preventive strategies for management of MRSA are highly required moreover, the identification and development of novel drugs or active biomolecules through phytochemicals are time challenging to face new resistant strains.

5.
Plants (Basel) ; 12(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37653914

RESUMEN

Anethum graveolens L. has been known as an aromatic, medicinal, and culinary herb since ancient times. The main purpose of this study was to determine the chemical composition, antibacterial, antibiofilm, and anti-quorum sensing activities of the essential oil (EO) obtained by hydro-distillation of the aerial parts. Twelve components were identified, representing 92.55% of the analyzed essential oil. Limonene (48.05%), carvone (37.94%), cis-dihydrocarvone (3.5%), and trans-carvone (1.07%) were the main identified constituents. Results showed that the obtained EO was effective against eight bacterial strains at different degrees. Concerning the antibiofilm activity, limonene was more effective against biofilm formation than the essential oil when tested using sub-inhibitory concentrations. The results of anti-swarming activity tested against P. aeruginosa PAO1 revealed that A. graveolens induced more potent inhibitory effects in the swarming behavior of the PAO1 strain when compared to limonene, with a percentage reaching 33.33% at a concentration of 100 µg/mL. The ADME profiling of the identified phytocompounds confirms their important pharmacokinetic and drug-like properties. The in-silico study using molecular docking approaches reveals a high binding score between the identified compounds and known target enzymes involved in antibacterial and anti-quorum sensing (QS) activities. Overall, the obtained results highlight the possible use of A. graveolens EO to prevent food contamination with foodborne pathogenic bacteria.

6.
Plants (Basel) ; 12(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37514334

RESUMEN

Catalase (CAT) is an antioxidant enzyme expressed by the CAT gene family and exists in almost all aerobic organisms. In fact, the CAT enzyme modulates the hydrogen peroxide (H2O2) contents in cells by translating this toxic compound into water (H2O) and O2- to reduce reactive oxygen species (ROS) contents in cells. ROS are produced as a result of biotic and abiotic environmental stressors. To avoid ROS toxicity, plants are armed with different enzymatic and non-enzymatic systems to decompose ROS. Among the enzymatic system, CAT proteins are well studied. CAT not only controls growth and development in plants but is also involved in plant defense against different stresses. So far, the CAT gene family has not been reported in durum wheat (Triticum turgidum ssp. durum L.). Therefore, a genome-wide comprehensive analysis was conducted to classify the CAT genes in the durum wheat genome. Here, six TdCAT genes were identified. Based on phylogenetics, the TdCAT genes belong to three groups (Groups I-III) which is explainable by their comparable structural characteristics. Using bio-informatic analysis, we found that the secondary and tertiary structures were conserved among plants and present similar structures among durum wheat CATs. Two conserved domains (pfam00199 and pfam06628) are also present in all identified proteins, which have different subcellular localizations: peroxisome and mitochondrion. By analyzing their promoters, different cis-elements were identified, such as hormone-correlated response and stress-related responsive elements. Finally, we studied the expression pattern of two catalase genes belonging to two different sub-classes under different abiotic stresses. Expression profiling revealed that TdCAT2 and TdCAT3 presented a constitutive expression pattern. Moreover, both genes are induced in response to salt, mannitol, cold, heat and ABA. Thus, we speculate that those genes are activated by different stresses, such as oxygen deficiency, light, cold, abscisic acid and methyl jasmonate. Further, this study will help in understanding the behavior of CAT genes during environmental stress in durum wheat and in Triticeae species in general.

7.
Microorganisms ; 11(5)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37317098

RESUMEN

Staphylococcus species are major pathogens with increasing importance due to the rise in antibiotic resistance. Whole genome sequencing and genome-scale annotation are promising approaches to study the pathogenicity and dissemination of virulence factors in nosocomial methicillin-resistant and multidrug-resistant bacteria in intensive care units. Draft genome sequences of eight clinical S. aureus strains were assembled and annotated for the prediction of antimicrobial resistance genes, virulence factors, and phylogenetic analysis. Most of the studied S. aureus strains displayed multi-resistance toward the tested drugs, reaching more than seven drugs up to 12 in isolate S22. The mecA gene was detected in three isolates (S14, S21, and S23), mecC was identified in S8 and S9, and blaZ was commonly identified in all isolates except strain S23. Additionally, two complete mobile genomic islands coding for methicillin resistance SCCmec Iva (2B) were identified in strains S21 and S23. Numerous antimicrobial resistance genes (norA, norC, MgrA, tet(45), APH(3')-IIIa, and AAC(6')-APH(2″)) were identified in chromosomes of different strains. Plasmid analysis revealed the presence of blaZ, tetK, and ermC in different plasmid types, located in gene cassettes containing plasmid replicons (rep) and insertion sequences (IS). Additionally, the aminoglycoside-resistant determinants were identified in S1 (APH(3')-IIIa), while AAC(6)-APH(2″) was detected in strains S8 and S14. The trimethoprim (dfrC) resistance gene was detected in S. aureus S21, and the fosfomycin (fosB) resistance gene was detected only in S. aureus S14. We also noted that S. aureus S1 belongs to ST1-t127, which has been reported as one of the most frequent human pathogen types. Additionally, we noted the presence of rare plasmid-mediated mecC-MRSA in some of our isolates.

8.
Plants (Basel) ; 13(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38202319

RESUMEN

Aerobic metabolism in plants results in the production of hydrogen peroxide (H2O2), a significant and comparatively stable non-radical reactive oxygen species (ROS). H2O2 is a signaling molecule that regulates particular physiological and biological processes (the cell cycle, photosynthesis, plant growth and development, and plant responses to environmental challenges) at low concentrations. Plants may experience oxidative stress and ultimately die from cell death if excess H2O2 builds up. Triticum dicoccoides, Triticum urartu, and Triticum spelta are different ancient wheat species that present different interesting characteristics, and their importance is becoming more and more clear. In fact, due to their interesting nutritive health, flavor, and nutritional values, as well as their resistance to different parasites, the cultivation of these species is increasingly important. Thus, it is important to understand the mechanisms of plant tolerance to different biotic and abiotic stresses by studying different stress-induced gene families such as catalases (CAT), which are important H2O2-metabolizing enzymes found in plants. Here, we identified seven CAT-encoding genes (TdCATs) in Triticum dicoccoides, four genes in Triticum urartu (TuCATs), and eight genes in Triticum spelta (TsCATs). The accuracy of the newly identified wheat CAT gene members in different wheat genomes is confirmed by the gene structures, phylogenetic relationships, protein domains, and subcellular location analyses discussed in this article. In fact, our analysis showed that the identified genes harbor the following two conserved domains: a catalase domain (pfam00199) and a catalase-related domain (pfam06628). Phylogenetic analyses showed that the identified wheat CAT proteins were present in an analogous form in durum wheat and bread wheat. Moreover, the identified CAT proteins were located essentially in the peroxisome, as revealed by in silico analyses. Interestingly, analyses of CAT promoters in those species revealed the presence of different cis elements related to plant development, maturation, and plant responses to different environmental stresses. According to RT-qPCR, Triticum CAT genes showed distinctive expression designs in the studied organs and in response to different treatments (salt, heat, cold, mannitol, and ABA). This study completed a thorough analysis of the CAT genes in Triticeae, which advances our knowledge of CAT genes and establishes a framework for further functional analyses of the wheat gene family.

9.
Molecules ; 27(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36364077

RESUMEN

To combat emerging antimicrobial-resistant microbes, there is an urgent need to develop new antimicrobials with better therapeutic profiles. For this, a series of 13 new spiropyrrolidine derivatives were designed, synthesized, characterized and evaluated for their in vitro antimicrobial, antioxidant and antidiabetic potential. Antimicrobial results revealed that the designed compounds displayed good activity against clinical isolated strains, with 5d being the most potent (MIC 3.95 mM against Staphylococcus aureus ATCC 25923) compared to tetracycline (MIC 576.01 mM). The antioxidant activity was assessed by trapping DPPH, ABTS and FRAP assays. The results suggest remarkable antioxidant potential of all synthesized compounds, particularly 5c, exhibiting the strongest activity with IC50 of 3.26 ± 0.32 mM (DPPH), 7.03 ± 0.07 mM (ABTS) and 3.69 ± 0.72 mM (FRAP). Tested for their α-amylase inhibitory effect, the examined analogues display a variable degree of α-amylase activity with IC50 ranging between 0.55 ± 0.38 mM and 2.19 ± 0.23 mM compared to acarbose (IC50 1.19 ± 0.02 mM), with the most active compounds being 5d, followed by 5c and 5j, affording IC50 of 0.55 ± 0.38 mM, 0.92 ± 0.10 mM, and 0.95 ± 0.14 mM, respectively. Preliminary structure-activity relationships revealed the importance of such substituents in enhancing the activity. Furthermore, the ADME screening test was applied to optimize the physicochemical properties and determine their drug-like characteristics. Binding interactions and stability between ligands and active residues of the investigated enzymes were confirmed through molecular docking and dynamic simulation study. These findings provided guidance for further developing leading new spiropyrrolidine scaffolds with improved dual antimicrobial and antidiabetic activities.


Asunto(s)
Antiinfecciosos , Antioxidantes , Antioxidantes/química , Simulación del Acoplamiento Molecular , Quinoxalinas , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Antibacterianos/química , Antiinfecciosos/farmacología , Relación Estructura-Actividad , alfa-Amilasas/metabolismo
10.
Antioxidants (Basel) ; 11(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36358580

RESUMEN

Catalase is a crucial enzyme in antioxidant defense systems protecting eukaryotes from oxidative stress. These proteins are present in almost all living organisms and play important roles in controlling plant responses to biotic and abiotic stresses by catalyzing the decomposition of H2O2. Despite their importance, little is known about their expression in the majority of monocotyledonous species. Here, we isolated and characterized two novel catalase genes from Triticum turgidum and Hordeum vulgare, designated as TtCAT1 and HvCAT1, respectively. Phylogenetic analysis revealed that TtCAT1 and HvCAT1 presented 492 aa and shared an important identity with other catalase proteins belonging to subfamily 1. Using bioinformatic analysis, we predicted the 3D structure models of TtCAT1 and HvCAT1. Interestingly, analysis showed that the novel catalases harbor a peroxisomal targeting signal (PTS1) located at their C-terminus portion, as shown for other catalase proteins. In addition, this motif is responsible for the in silico peroxisomal localization of both proteins. Finally, RT-qPCR analysis showed that TtCAT1 and HvCAT1 are highly expressed in leaves in normal conditions but faintly in roots. Moreover, both genes are upregulated after the application of different stresses such as salt, osmotic, cold, heavy metal, and hormonal stresses. The positive responses of TtCAT1 and HvCAT1 to the various stimuli suggested that these proteins can help to protect both species against environmental stresses.

11.
Life (Basel) ; 12(10)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36295051

RESUMEN

Essential oils from aromatic and medicinal plants have many bioactive compounds known for their important biological activities mainly their antibacterial effects. Here we evaluated qualitatively and quantitatively the biofilm formation capability of pathogenic bacterial strains (n = 8). Then, we investigated the antibacterial, antibiofilm, antiquorum-sensing, and antiswarming efficacy of Origanum vulgare essential oil (EO) and terpinene-4-ol. Our results revealed that EO exhibited a more potent inhibitory effect against the tested strains. While the terpinene-4-ol was found to be more effective against developed Staphylococcus aureus biofilm. Regarding the anti quorum-sensing activity, we noticed that O. vulgare displayed better inhibition percentages in violacein production even at a low concentration (MIC/4). Additionally, this EO showed better inhibition of Pseudomonas aeruginosa PAO1 migration in comparison with the terpinene-4-ol. Our findings revealed that using pure O. vulgare EO demonstrated better competitive effects against pathogenic bacteria with a different mode of action when compared to the terpinene-4-ol. Hence, exploration and development of efficient anti-infection agents from natural resources such as full EOs represent promising tools in anti-infective therapy.

12.
Antioxidants (Basel) ; 11(9)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36139894

RESUMEN

Catalase is a crucial enzyme in the antioxidant defense system protecting organisms from oxidative stress. Proteins of this kind play important roles in controlling plant response to biotic and abiotic stresses by catalyzing the decomposition of H2O2. The durum wheat catalase 1, TdCAT1, has been previously isolated and characterized. Here, using bio-informatic analysis, we showed that durum wheat catalase 1 TdCAT1 harbors different novel conserved domains. In addition, TdCAT1 contains various phosphorylation residues and S-Nitrosylation residues located at different positions along the protein sequence. TdCAT1 activity decreased after treatment with λ-phosphatase. On the other hand, we showed that durum wheat catalase 1 (TdCAT1) exhibits a low CAT activity in vitro, whereas a deleted form of TdCAT1 has better activity compared to the full-length protein (TdCAT460), suggesting that TdCAT1 could present a putative autoinhibitory domain in its C-terminal portion. Moreover, we showed that TdCAT1 positively regulates E. coli cells in response to salt, ionic and osmotic stresses as well as heavy metal stress in solid and liquid mediums. Such effects had not been reported and lead us to suggest that the durum wheat catalase 1 TdCAT1 protein could play a positive role in response to a wide array of abiotic stress conditions.

13.
Artículo en Inglés | MEDLINE | ID: mdl-35966725

RESUMEN

In consideration of the emergence of novel drug-resistant microbial strains and the increase in the incidences of various cancers throughout the world, honey could be utilized as a great alternative source of potent bioactive compounds. In this context, this study pioneers in reporting the phytochemical profiling and the antimicrobial, antioxidant, and anticancer properties of Acacia honey (AH) from the Hail region of Saudi Arabia, assessed using in vitro and molecular docking approaches. The phytochemical profiling based on high-resolution liquid chromatography-mass spectrometry (HR-LCMS) revealed eight compounds and three small peptide-like proteins as the constituents. The honey samples exhibited promising antioxidant activities (DPPH-IC50 = 0.670 mg/mL; ABTS-IC50 = 1.056 mg/mL; ß-carotene-IC50 > 5 mg/mL). In the well-diffusion assay, a high mean growth inhibition zone (mGIZ) was observed against Staphylococcus aureus (48.33 ± 1.53 mm), Escherichia coli ATCC 10536 (38.33 ± 1.53 mm), and Staphylococcus epidermidis ATCC 12228 (39.33 ± 1.15 mm). The microdilution assay revealed that low concentrations of AH could inhibit the growth of almost all the evaluated bacterial and fungal strains, with the minimal bactericidal concentration values (MBCs) ranging from 75 mg/mL to 300 mg/mL. On the contrary, high AH concentrations were required to kill the tested microorganisms, with the minimal bactericidal concentration values (MBCs) ranging from approximately 300 mg/mL to over 600 mg/mL and the minimal fungicidal concentration values (MFCs) of approximately 600 mg/mL. The AH exhibited effective anticancer activity in a dose-dependent manner against breast (MCF-7), colon (HCT-116), and lung (A549) cancer cell lines, with the corresponding IC50 values of 5.053 µg/mL, 5.382 µg/mL, and 6.728 µg/mL, respectively. The in silico investigation revealed that the observed antimicrobial, antioxidant, and anticancer activities of the constituent compounds of AH are thermodynamically feasible, particularly those of the tripeptides (Asp-Trp-His and Trp-Arg-Ala) and aminocyclitol glycoside. The overall results highlighted the potential of AH as a source of bioactive compounds with significant antimicrobial, antioxidant, and anticancer activities, which could imply further pharmacological applications of AH.

15.
Calcif Tissue Int ; 110(4): 475-488, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34988595

RESUMEN

Breast cancer bone metastases (BCBM) result in serious skeletal morbidity. Although there have been important advances in cancer treatment methods such as surgery and chemotherapy, the complementary treatments, such as α-tocopherol acetate (ATA), still remain of key role via complementary and/or synergistic effects. The aim of this work was to study immune response in a rat model of BCBM due to Walker 256/B cells inoculation and the effect of ATA alone. Compared to the control group (CTRL), rat injected with Walker 256/B cells (5 × 104) in the medullar cavity (W256 group) showed osteolytic damages with marked tumor osteolysis of both cancellous and trabecular bone as assessed by X-ray radiology, micro-computed tomography, and histology. Rats inoculated with Walker 256/B cells and treated with ATA (45 mg/kg BW, W256ATA group) presented marked less tumor osteolysis, less disturbance of Tb.Th and Tb.Sp associated with conversion of rods into plates, and increased structure model index and trabecular pattern factor (Tb.Pf). Elsewhere, 3D frequency distributions of Tb.Th and Tb.Sp were highly disturbed in metastatic W256 rats. Overexpression of some genes commonly associated with cancer and metastatic proliferation: COX-2, TNF-α, and pro-inflammatory interleukins 1 and 6 was outlined. ATA alleviated most of the Walker 256/B cells-induced microarchitectural changes in the target parameters without turning back to normal levels. Likewise, it alleviates the BCSM-induced overexpression of COX-2, TNF-α, IL-1, and IL-6. In silico approach showed that ATA bound these proteins with high affinities, which satisfactory explain its beneficial effects. In conclusion, BCBM is associated with bone microarchitectural disorders and an immune response characterized by an overexpression of some key role genes in cancer proliferation and invasion. ATA exerted favorable effects on trabecular bone distribution and morphology, which may involve the COX-2, TNF-α, and ILs pathways.


Asunto(s)
Neoplasias de la Mama , Osteólisis , alfa-Tocoferol , Animales , Neoplasias Óseas/secundario , Neoplasias de la Mama/patología , Ciclooxigenasa 2 , Suplementos Dietéticos , Osteólisis/tratamiento farmacológico , Osteólisis/patología , Ratas , Factor de Necrosis Tumoral alfa , Microtomografía por Rayos X , alfa-Tocoferol/farmacología
16.
Life (Basel) ; 13(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36675984

RESUMEN

Cancer is one of the major causes of death worldwide. The repercussions of conventional therapeutic approaches present a challenge in the delivery of new effective treatments. Thus, more attention is being awarded to natural products, mainly honey. Honey could be the basis for the development of new therapies for cancer patients. The aim of this study is to assess the phytochemical profiling, antioxidant, drug-likeness properties, and anticancer activity of Ziziphus honey (ZH) derived from the Hail region of Saudi Arabia. The phytochemical profiling using high resolution-liquid chromatography mass spectrometry (HR-LCMS) revealed 10 compounds belonging to several familial classes and one tripeptide. Potential antioxidant activity was noted as assessed by DPPH (IC50 0.670 mg/mL), ABTS (IC50 3.554 mg/mL), and ß-carotene (IC50 > 5 mg/mL). The ZH exerted a notable cytotoxic effect in a dose-dependent manner against three cancer cell lines: lung (A549), breast (MCF-7), and colon (HCT-116), with respective IC50 values of 5.203%, 6.02%, and 7.257%. The drug-likeness investigation unveiled that most of the identified compounds meet Lipinski's rule. The molecular docking analysis revealed interesting antioxidant and anticancer activities for most targeted proteins and supported the in vitro findings. The Miraxanthin-III compound exhibited the most stabilized interaction. This study provides deeper insights on ZH as prominent source of bioactive compounds with potent antioxidant and anticancer effects.

17.
Life (Basel) ; 13(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36676011

RESUMEN

Thymus musilii Velen. is a rare plant species cultivated in the Ha'il region (Saudi Arabia) under greenhouse conditions. In this work, we described, for the first time, the phytochemical composition, antimicrobial, antioxidant, anti-quorum sensing, and anticancer activities of T. musilii methanolic extract using both experimental and computational approaches. The obtained results showed the identification of eight small-like peptides and eighteen phyto-compounds by using high-resolution liquid chromatography-mass spectrometry (HR-LCMS) dominated mainly by compounds belonging to isoprenoid, fatty acyl, flavonoid, and alkaloid classes. The tested extracts exhibited high antifungal and antibacterial activity with the mean diameter of growth inhibition zones ranging from 12.33 ± 0.57 mm (Pseudomonas aeruginosa ATCC 27853) to 29.33 ± 1.15 mm (Candida albicans ATCC 10231). Low minimal inhibitory concentrations were recorded for the tested micro-organisms ranging from 0.781 mg/mL to 12.5 mg/mL. While higher doses were necessary to completely kill all tested bacterial and fungal strains. Thyme extract was able to scavenge DPPH•, ABTS•+, ß-carotene, and FRAP free radicals, and the IC50 values were 0.077 ± 0.0015 mg/mL, 0.040 ± 0.011 mg/mL, 0.287 ± 0.012 mg/mL, and 0.106 ± 0.007 mg/mL, respectively. The highest percentage of swarming and swimming inhibition was recorded at 100 µg/mL with 39.73 ± 1.5% and 25.18 ± 1%, respectively. The highest percentage of biofilm inhibition was recorded at 10 mg/mL for S. typhimurium ATCC 14028 (53.96 ± 4.21%) and L. monocytogenes ATCC 7644 (49.54 ± 4.5 mg/mL). The in silico docking study revealed that the observed antimicrobial, antioxidant, and anticancer activities of the constituent compounds of T. musilii are thermodynamically feasible, notably, such as those of the tripeptides (Asn-Met-His, His-Cys-Asn, and Phe-His-Gln), isoprenoids (10-Hydroxyloganin), and diterpene glycosides (4-Ketoretinoic acid glucuronide).

18.
Molecules ; 26(16)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34443463

RESUMEN

In our study, Allium subhirsutum L. (AS) was investigated to assess its phenolic profile and bioactive molecules including flavonoids and organosulfur compounds. The antioxidant potential of AS and wound healing activity were addressed using skin wound healing and oxidative stress and inflammation marker estimation in rat models. Phytochemical and antiradical activities of AS extract (ASE) and oil (ASO) were studied. The rats were randomly assigned to four groups: group I served as a control and was treated with simple ointment base, group II was treated with ASE ointment, group III was treated with ASO ointment and group IV (reference group; Ref) was treated with a reference drug "Cytolcentella® cream". Phytochemical screening showed that total phenols (215 ± 3.5 mg GAE/g) and flavonoids (172.4 ± 3.1 mg QE/g) were higher in the ASO than the ASE group. The results of the antioxidant properties showed that ASO exhibited the highest DPPH free radical scavenging potential (IC50 = 0.136 ± 0.07 mg/mL), FRAP test (IC50 = 0.013 ± 0.006 mg/mL), ABTS test (IC50 = 0.52 ± 0.03 mg/mL) and total antioxidant capacity (IC50 = 0.34 ± 0.06 mg/mL). In the wound healing study, topical application of ASO performed the fastest wound-repairing process estimated by a chromatic study, percentage wound closure, fibrinogen level and oxidative damage status, as compared to ASE, the Cytolcentella reference drug and the untreated rats. The use of AS extract and oil were also associated with the attenuation of oxidative stress damage in the wound-healing treated rats. Overall, the results provided that AS, particularly ASO, has a potential medicinal value to act as effective skin wound healing agent.


Asunto(s)
Allium/química , Antioxidantes/farmacología , Dermatitis/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Antioxidantes/química , Antioxidantes/uso terapéutico , Modelos Animales de Enfermedad , Fibrinógeno/metabolismo , Flavonoides/farmacología , Flavonoides/uso terapéutico , Tejido de Granulación/efectos de los fármacos , Masculino , Fenoles/farmacología , Fenoles/uso terapéutico , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Aceites de Plantas/química , Aceites de Plantas/farmacología , Aceites de Plantas/uso terapéutico , Ratas Wistar
19.
Foods ; 10(6)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203950

RESUMEN

In this study, the antioxidant and anti-inflammatory effects of Zingiber officinale roscoe and Allium subhirsutum aqueous extracts were examined in a carrageenan-induced acute inflammation model. Some markers of inflammation such as hematological parameters, fibrinogen and C-reactive protein were measured. Variables reflecting oxidative stress included thiobarbituric acid reactive substances (TBARS), advanced oxidation of protein products (AOPP), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione were determined in both inflamed foci and erythrocytes. The in silico molecular docking simulation showed that the main components of Zingiber officinale roscoe and Allium subhirsutum bound to toll-like receptor 6 (TLR6) with high affinities. Moreover, histological examinations of paw edema were carried out. Both Zingiber officinale roscoe and Allium subhirsutum ameliorated the induced inflammation and oxidative stress status as outlined by anti-edematous, antioxidant and anti-inflammatory activities. Our investigation lends pharmacological support to the medical uses of these spices in the management of inflammatory disorders and oxidative damage. The results of the in silico assay satisfactory explain the in vivo effects as compared with indomethacin.

20.
Bull Cancer ; 108(9): 798-805, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34140154

RESUMEN

INTRODUCTION: Apoptosis deregulation have been associated to tumorigenesis process and was highlighted as a prominent hallmark of cancer. Several mutations have been reported in several forms of Blood cancer. However, it has never been investigated in familial aggregations of hematological malignancies. METHODS: In this study, we performed a mutational analysis by sequencing the entire coding regions in four key apoptotic genes FAS, FASLG, CASP8 and CASP10 in 92 independent families belonging to French and Tunisian populations and diagnosed with several forms of familial hematological malignancies. RESULTS: We report 15 genetic variations among which 7 were previously reported in several form of cancers and have a potential effect on gene expression. Particularly, the CASP8 variants p.Asp302His and p.Lys337Lys were detected in 15% and 10% of our group of patients respectively and were previously reported in association to breast cancer and to breast cancer susceptibility. DISCUSSION: In this study, we do not report the underlining deleterious mutations in familial hematological malignancies, but we describe some variants with potential risk of developing blood cancer. To gain further insights on the association between apoptosis pathway deregulation and familial hematological malignancies, more apoptotic genes should be investigated.


Asunto(s)
Apoptosis/genética , Caspasa 10/genética , Caspasa 8/genética , Proteína Ligando Fas/genética , Neoplasias Hematológicas/genética , Receptor fas/genética , Alelos , Estudios Transversales , Análisis Mutacional de ADN/métodos , Familia , Francia , Predisposición Genética a la Enfermedad , Humanos , Intrones , Mutación Missense , Perforina/genética , Túnez
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA