Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(18)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37764530

RESUMEN

2D materials possess great potential to serve as gas-sensing materials due to their large, specific surface areas and strong surface activities. Among this family, transition metal chalcogenide materials exhibit different properties and are promising candidates for a wide range of applications, including sensors, photodetectors, energy conversion, and energy storage. Herein, a high-shear mixing method has been used to produce multilayered MoS2 nanosheet dispersions. MoS2 thin films were manufactured by vacuum-assisted filtration. The structural morphology of MoS2 was studied using ς-potential, UV-visible, scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy (RS). The spectroscopic and microscopic analyses confirm the formation of a high-crystalline MoS2 thin film with good inter-sheet connectivity and relative thickness uniformity. The thickness of the MoS2 layer is measured to be approximately 250 nm, with a nanosheet size of 120 nm ± 40 nm and a number of layers between 6 and 9 layers. Moreover, the electrical characteristics clearly showed that the MoS2 thin film exhibits good conductivity and a linear I-V curve response, indicating good ohmic contact between the MoS2 film and the electrodes. As an example of applicability, we fabricated chemiresistive sensor devices with a MoS2 film as a sensing layer. The performance of the MoS2-chemiresistive sensor for NO2 was assessed by being exposed to different concentrations of NO2 (1 ppm to 10 ppm). This sensor shows a sensibility to low concentrations of 1 ppm, with a response time of 114 s and a recovery time of 420 s. The effect of thin-film thickness and operating temperatures on sensor response was studied. The results show that thinner film exhibits a higher response to NO2; the response decreases as the working temperature increases.

2.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36850429

RESUMEN

Large-scale production of graphene nanosheets (GNSs) has led to the availability of solution-processable GNSs on the commercial scale. The controlled vacuum filtration method is a scalable process for the preparation of wafer-scale films of GNSs, which can be used for gas sensing applications. Here, we demonstrate the use of this deposition method to produce functional gas sensors, using a chemiresistor structure from GNS solution-based techniques. The GNS suspension was prepared by liquid-phase exfoliation (LPE) and transferred to a polyvinylidene fluoride (PVDF) membrane. The effect of non-covalent functionalization with Co-porphyrin and Fe-phthalocyanines on the sensor properties was studied. The pristine and functionalized GNS films were characterized using different techniques such as Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and electrical characterizations. The morphological and spectroscopic analyses both confirm that the molecules (Co-porphyrin and Fe-phthalocyanine) were successfully adsorbed onto the GNSs surface through π-π interactions. The chemiresistive sensor response of functionalized GNSs toward the low concentrations of nitrogen dioxide (NO2) (0.5-2 ppm) was studied and compared with those of the film of pristine GNSs. The tests on the sensing performance clearly showed sensitivity to a low concentration of NO2 (5 ppm). Furthermore, the chemical modification of GNSs significantly improves NO2 sensing performance compared to the pristine GNSs. The sensor response can be modulated by the type of adsorbed molecules. Indeed, Co-Por exhibited negative responsiveness (the response of Co-Por-GNS sensors and pristine GNS devices was 13.1% and 15.6%, respectively, after exposure to 0.5 ppm of NO2). Meanwhile, Fe-Phc-GNSs induced the opposite behavior resulting in an increase in the sensor response (the sensitivity was 8.3% and 7.8% of Fe-Phc-GNSs and pristine GNSs, respectively, at 0.5 ppm NO2 gas).

3.
Data Brief ; 38: 107366, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34584915

RESUMEN

This scientific data article is related to the research work entitled "Non-Covalent functionalization of Single Walled Carbon Nanotubes with Fe-/Co-porphyrin and Co-phthalocyanine for Field-Effect Transistor Applications" published in "Organic electronics" (10.1016/j.orgel.2021.106212). In this work, we present the data of morphological, chemical and structural analyses of non-covalent functionalization of SWNTs with Co-porphyrin and Co-phthalocyanine. The analyses were performed by Raman spectroscopy, transmission electron microscopy as well as the electrical characterization of CNTFETs. This work is completed by the data of the theoretical calculations performed using Density Functional Theory (DFT).

4.
Sci Rep ; 11(1): 10533, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006979

RESUMEN

Microplastics contaminating drinking water is a growing issue that has been the focus of a few recent studies, where a major bottleneck is the time-consuming analysis. In this work, a micro-optofluidic platform is proposed for fast quantification of microplastic particles, the identification of their chemical nature and size, especially in the 1-100 µm size range. Micro-reservoirs ahead of micro-filters are designed to accumulate all trapped solid particles in an ultra-compact area, which enables fast imaging and optical spectroscopy to determine the plastic nature and type. Furthermore, passive size sorting is implemented for splitting the particles according to their size range in different reservoirs. Besides, flow cytometry is used as a reference method for retrieving the size distribution of samples, where chemical nature information is lost. The proof of concept of the micro-optofluidic platform is validated using model samples where standard plastic particles of different size and chemical nature are mixed.

5.
Chem Commun (Camb) ; 48(72): 9071-3, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22863975

RESUMEN

The application of a negative gate voltage on a carbon nanotube field effect transistor decorated by a binuclear Tb(III) complex leads to the generation of a negatively charged mononuclear one, presenting an electron density transfer to the nanotube and ambipolar behaviour.

6.
J Am Chem Soc ; 134(18): 7896-901, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22524256

RESUMEN

Assembly of paramagnetic Cu(2) complexes with a Schiff base scaffold possessing extended electron delocalization together with a quasi-planar structure onto carbon nanotubes induces a diameter-selective charge transfer from the complex to the nanotubes leading to an interestingly large and tunable ambipolar effect. We used complementary techniques such as electron paramagnetic resonance, absorption spectroscopy, and photoluminescence to ensure the success of the assembly process and the integrity of the complex in the nanohybrid. We carried out density functional theory type calculations to rationalize the experimental results, evidencing the selective enhanced interaction of the metal complexes with one type of nanotube.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA