Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Environ Sci Pollut Res Int ; 30(34): 82637-82646, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37328728

RESUMEN

The evolution of low-cost ecotechnologies in water treatment and purification is highly increased. Face to the growing global demand for eco-friendly water treatment materials, the non-valorized herb-based biomass covering a large area could be a promising alternative. Herbs (HB) are currently one of the cheapest biomasses. Therefore, the utilization of HB for environmental applications is relevant. HB was treated and activated in this work to produce an eco-friendly adsorbent for nitrate removal from groundwater. HB was treated with modified carbonization at 220 °C to produce highly reactive biochar (BCH). Ammonium groups (AM) are immobilized covalently over the BCH surface, and then, the resulting materials BCH-AM are fully characterized. Results showed that ammonium is successfully grafted at the BCH surface, producing a highly stable material. Measurements on nitrate ion adsorption revealed that BCH-AM are of great interest as 80% of nitrate ions (NO3-) were removed. Importantly, the eco-friendly BCH-AM demonstrated the ability to easily desorb the nitrate ions using Na2CO3 as a green eluent. Parametric studies confirmed the effectiveness of the prepared adsorbent and approved that the adsorption occurred by electrostatic interactions. To demonstrate the performance of the adsorbent, BCH-AM was evaluated to remove NO3- from groundwater upstream in a water treatment plant. This work opens an immense perspective for herb biomass to be the actual challenge to resolve environmental problems.


Asunto(s)
Compuestos de Amonio , Agua Subterránea , Contaminantes Químicos del Agua , Nitratos , Contaminación Ambiental , Carbón Orgánico , Adsorción , Cinética
2.
Polymers (Basel) ; 15(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36987143

RESUMEN

This study aims to develop a new refreshing feeling, ecological, and antimicrobial fabrics for medicinal applications. The geranium essential oils (GEO) are incorporated into polyester and cotton fabrics by different methods, such as ultrasound, diffusion, and padding. The effect of solvent, nature of fibers, and treatment processes were evaluated via the thermal properties, the color strength, the odor intensity, the wash fastness, and the antibacterial activities of the fabrics. It was found that the ultrasound method was the most efficient process for incorporation of GEO. Ultrasound produced a great effect on the color strength of the treated fabrics, suggesting the absorption of geranium oil in fiber surface. The color strength (K/S) increased from 0.22 for the original fabric to 0.91 for the modified counterpart. In addition, the treated fibers showed appreciable antibacterial capacity against Gram-positive (Staphylococcus epidermidis) and Gram-negative (Escherichia coli) bacteria strains. Moreover, the ultrasound process can effectively guarantee the stability of geranium oil in fabrics without decreasing the significant odor intensity and antibacterial character. Based on the interesting properties like ecofriendliness, reusability, antibacterial, and a refreshing feeling, it was suggested that textile impregnated with geranium essential oil might be used as a potential material in cosmetic applications.

3.
RSC Adv ; 12(4): 2332-2348, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35425243

RESUMEN

Developing green and functional adsorbents for the removal of inorganic pollutants from industrial wastewater is still a great challenge. Activated carbons (ACs) are promising eco-friendly materials for adsorption applications. This study reports on the preparation and functionalization of AC and its application for fluoride removal from water. Activated carbon was prepared from date stems, and the material was employed as a support for different modifications such as incorporation of Al(OH)3, in situ dispersion of aluminum particles (Al0) and grafting of 3-(aminopropyl)triethoxysilane (APTES). The resulting functional adsorbents were fully characterized by Fourier transform infrared spectroscopy, scanning electronic microscopy, energy dispersive X-ray fluorescence, X-ray diffraction, differential scanning calorimetry and zeta potential analysis. The results evidenced successful surface modifications. All adsorbents had affinity for the removal of fluoride ions (F-). The highest F- removal rate was up to 20 mg g-1 for AC-Al(OH)3. Removal of fluoride ions obeyed Langmuir isotherms and a second-order kinetic model, and reached 99% uptake. The AC-Al(OH)3 adsorbent was successfully used to treat a groundwater solution contaminated by fluoride ions. These results open an interesting avenue for developing eco-friendly functionalized AC for adsorption applications.

4.
Polymers (Basel) ; 14(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35160372

RESUMEN

In the last decade, adsorption has exhibited promising and effective outcomes as a treatment technique for wastewater contaminated with many types of pollutants such as heavy metals, dyes, pharmaceuticals, and bacteria. To achieve such effectiveness, a number of potential adsorbents have been synthesized and applied for water remediation and antimicrobial activities. Among these inorganic adsorbents (INAD), activated carbon, silica, metal oxide, metal nanoparticles, metal-organic fibers, and graphene oxide have been evaluated. In recent years, significant efforts have been made in the development of highly efficient adsorbent materials for gas and liquid phases. For gas capture and water decontamination, the most popular and known functionalization strategy is the chemical grafting of amine, due to its low cost, ecofriendliness, and effectiveness. In this context, various amines such as 3-aminopropyltriethoxysilane (APTES), diethanolamine (DEA), dendrimer-based polyamidoamine (PAMAM), branched polyethyleneimine (PEI), and others are employed for the surface modification of INADs to constitute a large panel of resource and low-cost materials usable as an alternative to conventional treatments aimed at removing organic and inorganic pollutants and pathogenic bacteria. Amine-grafted INAD has long been considered as a promising approach for the adsorption of both inorganic and organic pollutants. The goal of this review is to provide an overview of surface modifications through amine grafting and their adsorption behavior under diverse conditions. Amine grafting strategies are investigated in terms of the effects of the solvent, temperature, and the concentration precursor. The literature survey presented in this work provides evidence of the significant potential of amine-grafted INAD to remove not only various contaminants separately from polluted water, but also to remove pollutant mixtures and bacteria.

5.
Chemosphere ; 279: 130481, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33894516

RESUMEN

The immobilization of biocatalysts or other bioactive components often means their transformation from a soluble to an insoluble state by attaching them to a solid support material. Various types of fibrous textiles from both natural and synthetic sources have been studied as suitable support material for biocatalysts immobilization. Strength, inexpensiveness, high surface area, high porosity, pore size, availability in various forms, and simple preparation/functionalization techniques have made textiles a primary choice for various applications. This led to the concept of a new domain called-biocatalysts immobilization on textiles. By addressing the growing advancement in biocatalysts immobilization on textile, this study provides the first detailed overview on this topic based on the terms of preparation, progress, and application in wastewater treatment. The fundamental reason behind the necessity of biocatalysts immobilized textile as well as the potential preparation methods has been identified and discussed. The overall progress and performances of biocatalysts immobilized textile have been scrutinized and summarized based on the form of textile, catalytic activity, and various influencing factors. This review also highlighted the potential challenges and future considerations that can enhance the pervasive use of such immobilized biocatalysts in various sustainable and green chemistry applications.


Asunto(s)
Textiles , Purificación del Agua , Enzimas Inmovilizadas
6.
Sci Rep ; 10(1): 16133, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32999300

RESUMEN

This work focuses on the optimization of heterogeneous Fenton-like removal of organic pollutant (dye) from water using newly developed fibrous catalysts based on a full factorial experimental design. This study aims to approximate the feasibility of heterogeneous Fenton-like removal process and optionally make predictions from this approximation in a form of statistical modeling. The fibrous catalysts were prepared by dispersing zerovalent iron nanoparticles on polyester fabrics (PET) before and after incorporation of either polyamidoamine (PAMAM, -NH2) dendrimer, 3-(aminopropyl) triethoxysilane (APTES, -Si-NH2) or thioglycerol (SH). The individual effect of two main factors [pH (X1) and concentration of hydrogen peroxide-[H2O2]µl (X2)] and their interactional effects on the removal process was determined at 95% confidence level by an L27 design. The results indicated that increasing the pH over 5 decreases the dye removal efficiency whereas the rise in [H2O2]µl until equilibrium point increases it. The principal effect of the type of catalysts (PET-NH2-Fe, PET-Si-NH2-Fe, and PET-SH-Fe) did not show any statistical significance. The factorial experiments demonstrated the existence of a significant synergistic interaction effect between the pH and [H2O2]µl as expressed by the values of the coefficient of interactions and analysis of variance (ANOVA). Finally, the functionalization of the resultant fibrous catalysts was validated by electrokinetic and X-ray photoelectron spectroscopy analysis. The optimization made from this study are of great importance for rational design and scaling up of fibrous catalyst for green chemistry and environmental applications.

7.
RSC Adv ; 10(22): 13155-13173, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35492101

RESUMEN

In this study, a flexible multifunctional fibrous membrane for heterogeneous Fenton-like removal of organic and pathogenic contaminants from wastewater was developed by immobilizing zerovalent iron nanoparticles (Fe-NPs) on an amine/thiol grafted polyester membrane. Full characterization of the resulting polyester membranes allowed validation of successful grafting of amine/thiol (NH2 or SH) functional groups and immobilization of Fe-NPs (50-150 nm). The Fenton-like functionality of iron immobilized fibrous membranes (PET-Fe, PET-Si-NH2-Fe, PET-NH2-Fe, and PET-SH-Fe) in the presence of hydrogen peroxide (H2O2) was comparatively studied in the removal of crystal violet dye (50 mg L-1). The effect of pH, amount of iron and H2O2 concentration on dye removal was systematically investigated. The highest dye removal yield reached 98.87% in 22 min at a rate constant 0.1919 min-1 (R 2 = 95.36) for PET-SH-Fe providing 78% toxicity reduction assessed by COD analysis. These membranes could be reused for up to seven repeated cycles. Kinetics and postulated mechanism of colour removal were proposed by examining the above results. In addition, the resultant membranes showed substantial antibacterial activity against pathogenic bacteria (Staphylococcus epidermidis, Escherichia coli) strains studied through disc diffusion-zone inhibitory and optical density analysis. These findings are of great importance because they provide a prospect of textile-based flexible catalysts in heterogeneous Fenton-like systems for environmental and green chemistry applications.

8.
Sci Rep ; 9(1): 15730, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31673063

RESUMEN

Robust immobilization of glucose oxidase (GOx) enzyme was achieved on poly(ethylene terephthalate) nonwoven fabric (PN) after integration of favourable surface functional groups through plasma treatments [atmospheric pressure-AP or cold remote plasma-CRP (N2 + O2)] and/or chemical grafting of hyperbranched dendrimers [poly-(ethylene glycol)-OH or poly-(amidoamine)]. Absorption, stability, catalytic behavior of immobilized enzymes and reusability of resultant fibrous bio-catalysts were comparatively studied. Full characterization of PN before and after respective modifications was carried out by various analytical, instrumental and arithmetic techniques. Results showed that modified polyester having amine terminal functional groups pledged better surface property providing up to 31% enzyme loading, and 81% active immobilized enzymes. The activity of the enzyme was measured in terms of interaction aptitude of GOx in a given time to produce hydrogen peroxide using colorimetric assay. The immobilized GOx retained 50% of its original activity after being reused six (06) times and exhibited improved stability compared with the free enzyme in relation to temperature. The reaction kinetics, loading efficiency, leaching, and reusability analysis of enzyme allowed drawing a parallel to the type of organic moiety integrated during GOx immobilization. In addition, resultant fibrous bio-catalysts showed substantial antibacterial activity against pathogenic bacteria strains (Staphylococcus epidermidis and Escherichia coli) in the presence of oxygen and glucose. These results are of great importance because they provide proof-of-concept for robust immobilization of enzymes on surface-modified fibrous polyester fabric for potential bio-industrial applications.


Asunto(s)
Dendrímeros/química , Glucosa Oxidasa/química , Gases em Plasma/química , Poliésteres/química , Biocatálisis , Colorimetría , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Enzimas Inmovilizadas/farmacología , Escherichia coli/efectos de los fármacos , Glucosa Oxidasa/metabolismo , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Cinética , Staphylococcus epidermidis/efectos de los fármacos
9.
Dalton Trans ; 48(23): 8384-8399, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31112160

RESUMEN

Dispersion of iron nanoparticles (Fe-NPs) was achieved on polyester fabrics (PET) before and after the incorporation of dendrimers (PAMAM), 3-(aminopropyl) triethoxysilane (APTES) or thioglycerol (SH). The catalytic activity of the resulting materials (PET-Fe, PET-PAMAM-Fe, PET-APTES-Fe and PET-SH-FE) was comparatively investigated in the degradation of 4-nitrophenol (4-NP) and methylene-blue (MB). Full characterization through diverse instrumental methods allowed correlating the type of the organic moiety incorporated with the Fe content, catalytic properties and stability. The highest 4-NP degradation yield reached 99.6% in 12 min for PET-SH-Fe. The catalytic activity was explained in terms of reactant interaction with Fe-NPs. The 1st order reaction kinetics and pseudo-1st order adsorption kinetics provide evidence of the key role of reactant adsorption. These findings allow envisaging the preparation of fiber-based catalysts for potential uses in environmental and green chemistry.

10.
J Colloid Interface Sci ; 513: 726-735, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29220687

RESUMEN

This article reports the synthesis and functionalization of a novel CuO@SiO2-APTES@Ag0 core-shell-shell material using a simple and low-cost process. The growth, design strategies and synthesis approach are the key factors for the development of CuO@SiO2-APTES@Ag0 as efficient material with enhanced antibacterial activity. We investigated the morphology, surface charge, structure and stability of our new core-shell-shell by atomic force microscopy, scanning electron microscopy, energy dispersive X-ray, Fourier transform infrared and UV-visible spectroscopies, zeta potential measurements, and differential scanning calorimetry. The covalent surface grafting of APTES (3-(aminopropyl)triethoxysilane) onto CuO@SiO2 involving electrostatic interactions was confirmed. Size measurements and Scanning electron images showed that both APTES grafting and SiO2/Ag shells dropped on the surface of CuO produced structural compaction. UV-Vis spectroscopy proved to be a fast and convenient way to optically detect SiO2 shell on the surface of colloids. Additionally, the Ag-decorated CuO@SiO2-APTES surfaces were found to possess antibacterial activity and thermally more stable than undecorated surfaces. CuO@SiO2-APTES@Ag0 core-shell had antibacterial properties against Gram-positive bacteria making it a promising candidate for antibacterial applications.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Cobre/química , Nanopartículas del Metal/administración & dosificación , Propilaminas/química , Silanos/química , Dióxido de Silicio/química , Plata/química , Antibacterianos/química , Nanopartículas del Metal/química
11.
Phys Chem Chem Phys ; 19(43): 29333-29343, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29075707

RESUMEN

Copper-loaded organo-montmorillonite showed improved affinity towards hydrogen under ambient conditions. Clay ion exchange with a propargyl-ended cation followed by thiol-yne coupling with thioglycerol resulted in a porous structure with a 6 fold higher specific surface area, which dramatically decreased after copper incorporation. X-ray diffraction and photoelectron spectrometry, nuclear magnetic resonance (1H and 13C) and CO2-thermal programmed desorption revealed strong sulfur:Cu0 and oxygen:Cu0 interactions. This was explained in terms of structure compaction that 'traps' Cu0 nanoparticles (CuNPs) and reduces their mobility. Transmission electron microscopy showed predominant 1.0-1.5 nm CuNPs. Hydrogen capture appears to involve predominantly physical interaction, since differential scanning calorimetry measurements gave low desorption heat and almost complete gas release between 20 °C and 75 °C. Possible hydrogen condensation within the compacted structure should hinder gas diffusion inside CuNPs and prevent chemisorption. These results allow safe hydrogen storage with easy gas release to be envisaged even at room temperature under vacuum. The reversible capture of hydrogen can be even more attractive when using natural inorganic supports and commercial plant-derived dendrimers judiciously functionalized, even at the expense of porosity.

12.
J Colloid Interface Sci ; 494: 92-97, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28142090

RESUMEN

The outer portion of the cocoa bean, also known as cocoa husk or cocoa shell (CS), is an agrowaste material from the cocoa industry. Even though raw CS is used as food additive, garden mulch, and soil conditioner or even burnt for fuel, this biomass material has hardly ever been investigated for further modification. This article proposes a strategy of chemical modification of cocoa shell to add value to this natural material. The study investigates the grafting of aryl diazonium salt on cocoa shell. Different diazonium salts were grafted on the shell surface and characterized by infrared spectroscopy and scanning electronic microscopy imaging. Strategies were developed to demonstrate the spontaneous grafting of aryl diazonium salt on cocoa shell and to elucidate that lignin is mainly involved in immobilizing the phenyl layer.


Asunto(s)
Cacao/anatomía & histología , Cacao/química , Compuestos de Diazonio/química , Cacao/ultraestructura , Lignina/química , Microscopía Electrónica de Rastreo , Espectrofotometría Infrarroja
13.
ChemSusChem ; 8(5): 800-3, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25663131

RESUMEN

Stabilization of metal nanoparticles (MNPs) without re-aggregation is a major challenge. An unprecedented strategy is developed for achieving high dispersion of copper(0) or palladium(0) on montmorillonite-supported diethanolamine or thioglycerol. This results in novel metal-inorganic-organic matrices (MIOM) that readily capture hydrogen at ambient conditions, with easy release under air stream. Hydrogen retention appears to involve mainly physical interactions, slightly stronger on thioglycerol-based MIOM (S-MIOM). Thermal enhancement of desorption suggests also a contribution of chemical interactions. The increase of hydrogen uptake with prolonged contact times arises from diffusion hindrance, which appears to be beneficial by favoring hydrogen entrapment. Even with compact structures, MIOMs act as efficient sorbents with much higher efficiency factor (1.14-1.17 mmol H 2 m(-2)) than many other sophisticated adsorbents reported in the literature. This opens new prospects for hydrogen storage and potential applications in microfluidic hydrogenation reactions.


Asunto(s)
Bentonita/química , Etanolaminas/química , Glicerol/análogos & derivados , Hidrógeno/química , Nanopartículas del Metal/química , Silanos/química , Cobre/química , Glicerol/química , Paladio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA