Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39201756

RESUMEN

Thiosemicarbazones and their metal complexes have been studied for their biological activities against bacteria, cancer cells and protozoa. Short-term in vitro treatment with one gold (III) complex (C3) and its salicyl-thiosemicarbazone ligand (C4) selectively inhibited proliferation of T. gondii. Transmission Electron Microscopy (TEM) detected transient structural alterations in the parasitophorous vacuole membrane and the tachyzoite cytoplasm, but the mitochondrial membrane potential appeared unaffected by these compounds. Proteins potentially interacting with C3 and C4 were identified using differential affinity chromatography coupled with mass spectrometry (DAC-MS). Moreover, long-term in vitro treatment was performed to investigate parasitostatic or parasiticidal activity of the compounds. DAC-MS identified 50 ribosomal proteins binding both compounds, and continuous drug treatments for up to 6 days caused the loss of efficacy. Parasite tolerance to both compounds was, however, rapidly lost in their absence and regained shortly after re-exposure. Proteome analyses of six T. gondii ME49 clones adapted to C3 and C4 compared to the non-adapted wildtype revealed overexpression of ribosomal proteins, of two transmembrane proteins involved in exocytosis and of an alpha/beta hydrolase fold domain-containing protein. Results suggest that C3 and C4 may interfere with protein biosynthesis and that adaptation may be associated with the upregulated expression of tachyzoite transmembrane proteins and transporters, suggesting that the in vitro drug tolerance in T. gondii might be due to reversible, non-drug specific stress-responses mediated by phenotypic plasticity.


Asunto(s)
Proteínas Ribosómicas , Tiosemicarbazonas , Toxoplasma , Toxoplasma/efectos de los fármacos , Toxoplasma/metabolismo , Tiosemicarbazonas/farmacología , Proteínas Ribosómicas/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Adaptación Fisiológica/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Regulación hacia Arriba/efectos de los fármacos , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Animales
2.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39000012

RESUMEN

Identification of drug targets and biochemical investigations on mechanisms of action are major issues in modern drug development. The present article is a critical review of the classical "one drug"-"one target" paradigm. In fact, novel methods for target deconvolution and for investigation of resistant strains based on protein mass spectrometry have shown that multiple gene products and adaptation mechanisms are involved in the responses of pathogens to xenobiotics rather than one single gene or gene product. Resistance to drugs may be linked to differential expression of other proteins than those interacting with the drug in protein binding studies and result in complex cell physiological adaptation. Consequently, the unraveling of mechanisms of action needs approaches beyond proteomics. This review is focused on protozoan pathogens. The conclusions can, however, be extended to chemotherapies against other pathogens or cancer.


Asunto(s)
Antiprotozoarios , Proteómica , Proteómica/métodos , Humanos , Antiprotozoarios/farmacología , Animales , Proteínas Protozoarias/metabolismo , Resistencia a Medicamentos
3.
Front Cell Infect Microbiol ; 14: 1419209, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975328

RESUMEN

As for many other organisms, CRISPR-Cas9 mediated genetic modification has gained increasing importance for the identification of vaccine candidates and drug targets in Neospora caninum, an apicomplexan parasite causing abortion in cattle and neuromuscular disease in dogs. A widely used approach for generating knock-out (KO) strains devoid of virulence factors is the integration of a drug selectable marker such as mutated dihydrofolate reductase-thymidylate synthase (mdhfr-ts) into the target gene, thus preventing the synthesis of respective protein and mediating resistance to pyrimethamine. However, CRISPR-Cas9 mutagenesis is not free of off-target effects, which can lead to integration of multiple mdhfr-ts copies into other sites of the genome. To determine the number of integrated mdhfr-ts in N. caninum, a duplex quantitative TaqMan PCR was developed. For this purpose, primers were designed that amplifies a 106 bp fragment from wild-type (WT) parasites corresponding to the single copy wtdhfrs-ts gene, as well as the mutated mdhfrs-ts present in KO parasites that confers resistance and were used simultaneously with primers amplifying the diagnostic NC5 gene. Thus, the dhfr-ts to NC5 ratio should be approximately 1 in WT parasites, while in KO parasites with a single integrated mdhrf-ts gene this ratio is doubled, and in case of multiple integration events even higher. This approach was applied to the Neospora KO strains NcΔGRA7 and NcΔROP40. For NcΔGRA7, the number of tachyzoites determined by dhfr-ts quantification was twice the number of tachyzoites determined by NC5 quantification, thus indicating that only one mdhfr-ts copy was integrated. The results obtained with the NcΔROP40 strain, however, showed that the number of dhfr-ts copies per genome was substantially higher, indicating that at least three copies of the selectable mdhfr-ts marker were integrated into the genomic DNA during gene editing by CRISPR-Cas9. This duplex TaqMan-qPCR provides a reliable and easy-to-use tool for assessing CRISPR-Cas9 mediated mutagenesis in WT N. caninum strains.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Neospora , Tetrahidrofolato Deshidrogenasa , Timidilato Sintasa , Tetrahidrofolato Deshidrogenasa/genética , Neospora/genética , Timidilato Sintasa/genética , Animales , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Resistencia a Medicamentos/genética , Edición Génica/métodos , Coccidiosis/parasitología , Complejos Multienzimáticos
4.
Adv Parasitol ; 124: 91-154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38754928

RESUMEN

Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants.


Asunto(s)
Coccidiosis , Neospora , Vacunas Antiprotozoos , Animales , Coccidiosis/prevención & control , Coccidiosis/veterinaria , Coccidiosis/parasitología , Coccidiosis/tratamiento farmacológico , Coccidiosis/inmunología , Neospora/inmunología , Vacunas Antiprotozoos/inmunología , Bovinos , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/parasitología , Desarrollo de Vacunas
5.
Int J Parasitol Drugs Drug Resist ; 25: 100544, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38703737

RESUMEN

Organometallic compounds, including Ruthenium complexes, have been widely developed as anti-cancer chemotherapeutics, but have also attracted much interest as potential anti-parasitic drugs. Recently hybrid drugs composed of organometallic Ruthenium moieties that were complexed to different antimicrobial agents were synthesized. One of these compounds, a trithiolato-diRuthenium complex (RU) conjugated to sulfadoxine (SDX), inhibited proliferation of Toxoplasma gondii tachyzoites grown in human foreskin fibroblast (HFF) monolayers with an IC50 < 150 nM, while SDX and the non-modified RU complex applied either individually or as an equimolar mixture were much less potent. In addition, conjugation of SDX to RU lead to decreased HFF cytotoxicity. RU-SDX did not impair the in vitro proliferation of murine splenocytes at concentrations ranging from 0.1 to 0.5 µM but had an impact at 2 µM, and induced zebrafish embryotoxicity at 20 µM, but not at 2 or 0.2 µM. RU-SDX acted parasitostatic but not parasiticidal, and induced transient ultrastructural changes in the mitochondrial matrix of tachyzoites early during treatment. While other compounds that target the mitochondrion such as the uncouplers FCCP and CCCP and another trithiolato-Ruthenium complex conjugated to adenine affected the mitochondrial membrane potential, no such effect was detected for RU-SDX. Evaluation of the in vivo efficacy of RU-SDX in a murine T. gondii oocyst infection model comprised of non-pregnant outbred CD1 mice showed no effects on the cerebral parasite burden, but reduced parasite load in the eyes and in heart tissue.


Asunto(s)
Toxoplasma , Pez Cebra , Toxoplasma/efectos de los fármacos , Animales , Ratones , Humanos , Fibroblastos/efectos de los fármacos , Fibroblastos/parasitología , Rutenio/química , Rutenio/farmacología , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/parasitología , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Antiprotozoarios/química , Femenino , Concentración 50 Inhibidora
6.
Exp Parasitol ; 255: 108655, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37981259

RESUMEN

In previous studies, the artemisinin derivatives artemisone, its pro-drug artemiside and the bumped-kinase inhibitor BKI-1748 were effective against T. gondii via different modes of action. This suggests that they may act synergistically resulting in improved efficacies in vitro and in vivo. To test this hypothesis, the compounds were applied alone and in combination to T. gondii infected human fibroblast host cells in order to determine their inhibition constants and effects on cellular ultrastructure. In addition, the efficacy of either single- or combined treatments were assessed in an acute TgShSp1-oocyst infection model based on CD1 outbred mice. Whereas the IC50 of the compounds in combination (42 nM) was close to the IC50 of BKI-1748 alone (46 nM) and half of the IC50 of artemisone alone (92 nM), the IC90 of the combination was half of the values found with the single compounds (138 nM vs. ca. 270 nM). Another indication for synergistic effects in vitro were distinct alterations of the cellular ultrastructure of tachyzoites observed in combination, but not with the single compounds. These promising results could not be reproduced in vivo. There was no decrease in number of T. gondii positive brains by either treatment. However, the levels of infection in these brains, i. e. the number of tachyzoites, was significantly decreased upon BKI-1748 treatment alone, and the combination with artemiside did not produce any further decrease. The treatment with artemiside alone had no significant effects. A vertical transmission model could not be established since artemiside strongly interfered with pregnancy and caused abortion. These results show that is difficult to extrapolate from promising in vitro results to the situation in vivo.


Asunto(s)
Antineoplásicos , Artemisininas , Toxoplasma , Toxoplasmosis , Embarazo , Femenino , Ratones , Humanos , Animales , Toxoplasmosis/tratamiento farmacológico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Transmisión Vertical de Enfermedad Infecciosa , Antineoplásicos/farmacología
7.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37445632

RESUMEN

In T. gondii, as well as in other model organisms, gene knock-out using CRISPR-Cas9 is a suitable tool to identify the role of specific genes. The general consensus implies that only the gene of interest is affected by the knock-out. Is this really the case? In a previous study, we generated knock-out (KO) clones of TgRH88_077450 (SRS29B; SAG1) which differed in the numbers of the integrated dihydrofolate-reductase-thymidylate-synthase (MDHFR-TS) drug-selectable marker. Clones 18 and 33 had a single insertion of MDHFR-TS within SRS29B. Clone 6 was disrupted by the insertion of a short unrelated DNA-sequence, but the marker was integrated elsewhere. In clone 30, the marker was inserted into SRS29B, and several other MDHFR-TS copies were found in the genome. KO and wild-type (WT) tachyzoites had similar shapes, dimensions, and vitality. This prompted us to investigate the impact of genetic engineering on the overall proteome patterns of the four clones as compared to the respective WT. Comparative shotgun proteomics of the five strains was performed. Overall, 3236 proteins were identified. Principal component analysis of the proteomes revealed five distinct clusters corresponding to the five strains by both iTop3 and iLFQ algorithms. Detailed analysis of the differentially expressed proteins revealed that the target of the KO, srs29B, was lacking in all KO clones. In addition to this protein, 20 other proteins were differentially expressed between KO clones and WT or between different KO clones. The protein exhibiting the highest variation between the five strains was srs36D encoded by TgRH_016110. The deregulated expression of SRS36D was further validated by quantitative PCR. Moreover, the transcript levels of three other selected SRS genes, namely SRS36B, SRS46, and SRS57, exhibited significant differences between individual strains. These results indicate that knocking out a given gene may affect the expression of other genes. Therefore, care must be taken when specific phenotypes are regarded as a direct consequence of the KO of a given gene.


Asunto(s)
Toxoplasma , Toxoplasma/genética , Proteómica/métodos , Secuencia de Bases , Técnicas de Inactivación de Genes , Proteínas Protozoarias/genética , Proteínas Protozoarias/análisis , Células Clonales
8.
Pathogens ; 12(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36986369

RESUMEN

The effects of decoquinate (DCQ) and three O-quinoline-carbamate-derivatives were investigated using human foreskin fibroblasts (HFF) infected with Neospora caninum tachyzoites. These compounds exhibited half-maximal proliferation inhibition (IC50s) from 1.7 (RMB060) to 60 nM (RMB055). Conversely, when applied at 5 (DCQ, RMB054) or 10µM (RMB055, RMB060), HFF viability was not affected. Treatments of infected cell cultures at 0.5µM altered the ultrastructure of the parasite mitochondrion and cytoplasm within 24 h, most pronounced for RMB060, and DCQ, RMB054 and RMB060 did not impair the viability of splenocytes from naïve mice. Long-term treatments of N. caninum-infected HFF monolayers with 0.5µM of each compound showed that only exposure to RMB060 over a period of six consecutive days had a parasiticidal effect, while the other compounds were not able to kill all tachyzoites in vitro. Thus, DCQ and RMB060 were comparatively assessed in the pregnant neosporosis mouse model. The oral application of these compounds suspended in corn oil at 10 mg/kg/day for 5 d resulted in a decreased fertility rate and litter size in the DCQ group, whereas reproductive parameters were not altered by RMB060 treatment. However, both compounds failed to protect mice from cerebral infection and did not prevent vertical transmission/pup mortality. Thus, despite the promising in vitro efficacy and safety characteristics of DCQ and DCQ-derivatives, proof of concept for activity against neosporosis could not be demonstrated in the murine model.

9.
Molecules ; 28(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36677958

RESUMEN

Eight novel carbohydrate-tethered trithiolato dinuclear ruthenium(II)-arene complexes were synthesized using CuAAC 'click' (Cu(I)-catalyzed azide-alkyne cycloaddition) reactions, and there in vitro activity against transgenic T. gondii tachyzoites constitutively expressing ß-galactosidase (T. gondii ß-gal) and in non-infected human foreskin fibroblasts, HFF, was determined at 0.1 and 1 µM. When evaluated at 1 µM, seven diruthenium-carbohydrate conjugates strongly impaired parasite proliferation by >90%, while HFF viability was retained at 50% or more, and they were further subjected to the half-maximal inhibitory concentration (IC50) measurement on T. gondii ß-gal. Results revealed that the biological activity of the hybrids was influenced both by the nature of the carbohydrate (glucose vs. galactose) appended on ruthenium complex and the type/length of the linker between the two units. 23 and 26, two galactose-based diruthenium conjugates, exhibited low IC50 values and reduced effect on HFF viability when applied at 2.5 µM (23: IC50 = 0.032 µM/HFF viability 92% and 26: IC50 = 0.153 µM/HFF viability 97%). Remarkably, compounds 23 and 26 performed significantly better than the corresponding carbohydrate non-modified diruthenium complexes, showing that this type of conjugates are a promising approach for obtaining new antiparasitic compounds with reduced toxicity.


Asunto(s)
Rutenio , Toxoplasma , Humanos , Antiparasitarios/farmacología , Rutenio/farmacología , Galactosa/farmacología
10.
Molecules ; 27(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36500266

RESUMEN

Aiming toward compounds with improved anti-Toxoplasma activity by exploiting the parasite auxotrophies, a library of nucleobase-tethered trithiolato-bridged dinuclear ruthenium(II)-arene conjugates was synthesized and evaluated. Structural features such as the type of nucleobase and linking unit were progressively modified. For comparison, diruthenium hybrids with other type of molecules were also synthesized and assessed. A total of 37 compounds (diruthenium conjugates and intermediates) were evaluated in a primary screening for in vitro activity against transgenic Toxoplasma gondii tachyzoites constitutively expressing ß-galactosidase (T. gondii ß-gal) at 0.1 and 1 µM. In parallel, the cytotoxicity in non-infected host cells (human foreskin fibroblasts, HFF) was determined by alamarBlue assay. Twenty compounds strongly impairing parasite proliferation with little effect on HFF viability were subjected to T. gondii ß-gal half maximal inhibitory concentration determination (IC50) and their toxicity for HFF was assessed at 2.5 µM. Two promising compounds were identified: 14, ester conjugate with 9-(2-oxyethyl)adenine, and 36, a click conjugate bearing a 2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)methyl substituent, with IC50 values of 0.059 and 0.111 µM respectively, significantly lower compared to pyrimethamine standard (IC50 = 0.326 µM). Both 14 and 36 exhibited low toxicity against HFF when applied at 2.5 µM and are candidates for potential treatment options in a suitable in vivo model.


Asunto(s)
Antiinfecciosos , Rutenio , Toxoplasma , Humanos , Rutenio/farmacología , Rutenio/química , Antiparasitarios/farmacología , Antiparasitarios/química , Antiinfecciosos/farmacología , Fibroblastos
11.
Biomedicines ; 10(11)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36359195

RESUMEN

Leucinostatins are antimicrobial peptides with a broad range of activities against infectious agents as well as mammalian cells. The leucinostatin-derivative peptide ZHAWOC_6027 (peptide 6027) was tested in vitro and in vivo for activity against the intracellular apicomplexan parasite Toxoplasma gondii. While highly efficacious in vitro (EC50 = 2 nM), subcutaneous application of peptide 6027 (3 mg/kg/day for 5 days) in mice experimentally infected with T. gondii oocysts exacerbated the infection, caused mild clinical signs and elevated cerebral parasite load. Peptide 6027 also impaired the proliferation and viability of mouse splenocytes, most notably LPS-stimulated B cells, in vitro. To identify common potential targets in Toxoplasma and murine splenocytes, we performed differential affinity chromatography (DAC) with cell-free extracts from T. gondii tachyzoites and mouse spleens using peptide 6027 or an ineffective analogue (peptide 21,358) coupled to N-hydroxy-succinimide sepharose, followed by mass spectrometry. Proteins specifically binding to peptide 6027 were identified in eluates from the peptide 6027 column but not in peptide 21,358 nor the mock column eluates. In T. gondii eluates, 269 proteins binding specifically to peptide 6027 were identified, while in eluates from mouse spleen extracts 645 proteins specifically binding to this peptide were detected. Both datasets contained proteins involved in mitochondrial energy metabolism and in protein processing and secretion. These results suggest that peptide 6027 interacts with common targets in eukaryotes involved in essential pathways. Since this methodology can be applied to various compounds as well as target cell lines or organs, DAC combined with mass spectrometry and proteomic analysis should be considered a smart and 3R-relevant way to identify drug targets in pathogens and hosts, thereby eliminating compounds with potential side effects before performing tedious and costly safety and efficacy assessments in animals or humans.

12.
Chembiochem ; 23(23): e202200536, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36219484

RESUMEN

The synthesis, photophysical properties and antiparasitic efficacy against Toxoplasma gondii ß-gal (RH strain tachyzoites expressing ß-galactosidase) grown in human foreskin fibroblast monolayers (HFF) of a series of 15 new conjugates BODIPY-trithiolato-bridged dinuclear ruthenium(II)-arene complexes are reported (BODIPY=4,4-difluoro-4-bora-3a,4a-diaza-s-indacene, derivatives used as fluorescent markers). The influence of the bond type (amide vs. ester), as well as that of the length and nature (alkyl vs. aryl) of the spacer between the dye and the diruthenium(II) complex moiety, on fluorescence and biological activity were evaluated. The assessed photophysical properties revealed that despite an important fluorescence quenching effect observed after conjugating the BODIPY to the diruthenium unit, the hybrids could nevertheless be used as fluorescent tracers. Although the antiparasitic activity of this series of conjugates appears limited, the compounds demonstrate potential as fluorescent probes for investigating the intracellular trafficking of trithiolato-bridged dinuclear Ru(II)-arene complexes in vitro.


Asunto(s)
Rutenio , Humanos , Rutenio/química , Compuestos de Boro/química , Colorantes Fluorescentes/química , Antiparasitarios/farmacología , Antiparasitarios/química
13.
PLoS One ; 17(9): e0271011, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36112587

RESUMEN

Herein, we developed a single and a duplex TaqMan quantitative PCR (qPCR) for absolute quantification of copy numbers of integrated dihydrofolate reductase-thymidylate synthase (mdhfr-ts) drug selectable marker for pyrimethamine resistance in Toxoplasma gondii knockouts (KOs). The single TaqMan qPCR amplifies a 174 bp DNA fragment of the inserted mdhfr-ts and of the wild-type (WT) dhfr-ts (wtdhfr-ts) which is present as single copy gene in Toxoplasma and encodes a sensitive enzyme to pyrimethamine. Thus, the copy number of the dhfr-ts fragment in a given DNA quantity from KO parasites with a single site-specific integration should be twice the number of dhfr-ts copies recorded in the same DNA quantity from WT parasites. The duplex TaqMan qPCR allows simultaneous amplification of the 174 bp dhfr-ts fragment and the T. gondii 529-bp repeat element. Accordingly, for a WT DNA sample, the determined number of tachyzoites given by dhfr-ts amplification is equal to the number of tachyzoites determined by amplification of the Toxoplasma 529-bp, resulting thus in a ratio of 1. However, for a KO clone having a single site-specific integration of mdhfr-ts, the calculated ratio is 2. We then applied both approaches to test T. gondii RH mutants in which the major surface antigen (SAG1) was disrupted through insertion of mdhfr-ts using CRISPR-Cas9. Results from both assays were in correlation showing a high accuracy in detecting KOs with multiple integrated mdhfr-ts. Southern blot analyses using BsaBI and DraIII confirmed qPCRs results. Both TaqMan qPCRs are needed for reliable diagnostic of T. gondii KOs following CRISPR-Cas9-mediated mutagenesis, particularly with respect to off-target effects resulting from multiple insertions of mdhfr-ts. The principle of the duplex TaqMan qPCR is applicable for other selectable markers in Toxoplasma. TaqMan qPCR tools may contribute to more frequent use of WT Toxoplasma strains during functional genomics.


Asunto(s)
Timidilato Sintasa , Toxoplasma , Antígenos de Superficie/farmacología , Sistemas CRISPR-Cas/genética , ADN/farmacología , Variaciones en el Número de Copia de ADN , Mutagénesis Sitio-Dirigida , Reacción en Cadena de la Polimerasa , Pirimetamina/farmacología , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo
14.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34639127

RESUMEN

Toxoplasma gondii is an apicomplexan parasite that infects and proliferates within many different types of host cells and infects virtually all warm-blooded animals and humans. Trypanosoma brucei is an extracellular kinetoplastid that causes human African trypanosomiasis and Nagana disease in cattle, primarily in rural sub-Saharan Africa. Current treatments against both parasites have limitations, e.g., suboptimal efficacy and adverse side effects. Here, we investigate the potential cellular and molecular targets of a trithiolato-bridged arene ruthenium complex conjugated to 9-(2-hydroxyethyl)-adenine (1), which inhibits both parasites with IC50s below 10-7 M. Proteins that bind to 1 were identified using differential affinity chromatography (DAC) followed by shotgun-mass spectrometry. A trithiolato-bridged ruthenium complex decorated with hypoxanthine (2) and 2-hydroxyethyl-adenine (3) were included as controls. Transmission electron microscopy (TEM) revealed distinct ultrastructural modifications in the mitochondrion induced by (1) but not by (2) and (3) in both species. DAC revealed 128 proteins in T. gondii and 46 proteins in T. brucei specifically binding to 1 but not 2 or 3. In T. gondii, the most abundant was a protein with unknown function annotated as YOU2. This protein is a homolog to the human mitochondrial inner membrane translocase subunit Tim10. In T. brucei, the most abundant proteins binding specifically to 1 were mitochondrial ATP-synthase subunits. Exposure of T. brucei bloodstream forms to 1 resulted in rapid breakdown of the ATP-synthase complex. Moreover, both datasets contained proteins involved in key steps of metabolism and nucleic acid binding proteins.


Asunto(s)
Nucleótidos/química , Compuestos de Rutenio/farmacología , Compuestos de Sulfhidrilo/química , Toxoplasma/efectos de los fármacos , Toxoplasmosis/tratamiento farmacológico , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis/tratamiento farmacológico , Humanos , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Compuestos de Rutenio/química , Toxoplasma/metabolismo , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis/metabolismo , Tripanosomiasis/parasitología
15.
Pathogens ; 10(10)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34684284

RESUMEN

Drug-based treatment of alveolar echinococcosis (AE) with benzimidazoles is in most cases non-curative, thus has to be taken lifelong. Here, we report on a 56-year-old male AE patient who received standard benzimidazole treatment and biliary plastic stents, and additionally self-medicated himself with the Peruvian plant extract Maca (Lepidium meyenii). After 42 months, viable parasite tissue had disappeared. Based on this striking observation, the anti-echinococcal activity of Maca was investigated in vitro and in mice experimentally infected with Echinococcus multilocularis metacestodes. Albendazole (ABZ)-treated mice and mice treated with an ABZ+Maca combination exhibited a significantly reduced parasite burden compared to untreated or Maca-treated mice. As shown by a newly established UHPLC-MS/MS-based measurement of ABZ-metabolites, the presence of Maca during the treatment did not alter ABZ plasma levels. In vitro assays corroborated these findings, as exposure to Maca had no notable effect on E. multilocularis metacestodes, and in cultures of germinal layer cells, possibly unspecific, cytotoxic effects of Maca were observed. However, in the combined treatments, Maca inhibited the activity of ABZ in vitro. While Maca had no direct anti-parasitic activity, it induced in vitro proliferation of murine spleen cells, suggesting that immunomodulatory properties could have contributed to the curative effect seen in the patient.

16.
Eur J Med Chem ; 222: 113610, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34144354

RESUMEN

A structure activity relationship (SAR) study of a library of 56 compounds (54 ruthenium and 2 osmium derivatives) based on the trithiolato-bridged dinuclear ruthenium(II)-arene scaffold (general formula [(η6-arene)2Ru2(µ2-SR)3]+, symmetric and [(η6-arene)2Ru2(µ2-SR1)2(µ2-SR2)]+, mixed, respectively) is reported. The 56 compounds (of which 34 are newly designed drug candidates) were synthesized by introducing chemical modifications at the level of bridge thiols, and they were grouped into eight families according to their structural features. The selected fittings were guided by previous results and focused on a fine-tuning of the physico-chemical and steric properties. Newly synthesized complexes were characterized by NMR spectroscopy, mass spectrometry and elemental analysis, and four single-crystal X-ray structures were obtained. The in vitro biological assessment of the compounds was realized by applying a three-step screening cascade: (i) evaluation of the activity against Toxoplasma gondii RH strain tachyzoites expressing ß-galactosidase (T. gondii-ß-gal) grown in human foreskin fibroblast monolayers (HFF) and assessment of toxicity in non-infected HFF host cells; (ii) dose-response assays using selected compound, and (iii) studies on the effects in murine splenocytes. A primary screening was performed at 1 and 0.1 µM, and resulted in the selection of 39 compounds that inhibited parasite proliferation at 1 µM by more than 95% and reduced the viability of HFF by less than 49%. In the secondary screening, dose-response assays showed that the selected compounds exhibited half maximal inhibitory concentration (IC50) values for T. gondii-ß-gal between 0.01 µM and 0.45 µM, with 30 compounds displaying an IC50 lower than 0.1 µM. When applied to non-infected HFF monolayers at 2.5 µM, 8 compounds caused more than 90% and 31 compounds more than 30% viability impairment. The tertiary screening included 14 compounds that did not cause HFF viability loss higher than 50% at 2.5 µM. These derivatives were assessed for potential immunosuppressive activities. First, splenocyte viability was assessed after treatment of cells with concanavalin A (ConA) and lipopolysaccharide (LPS) with compounds applied at 0.1 and 0.5 µM. Subsequently, the 5 compounds exhibiting the lowest splenocyte toxicity were further evaluated for their potential to inhibit B and T cell proliferation. Overall, compound 55 [(η6-p-MeC6H4Pri)2Ru2(µ2-SC6H4-o-CF3)2(µ2-SC6H4-p-OH)]Cl exhibited the most favorable features, and will be investigated as a scaffold for further optimization in terms of anti-parasitic efficacy and drug-like properties.


Asunto(s)
Antiparasitarios/farmacología , Complejos de Coordinación/farmacología , Rutenio/farmacología , Compuestos de Sulfhidrilo/farmacología , Toxoplasma/efectos de los fármacos , Antiparasitarios/síntesis química , Antiparasitarios/química , Línea Celular , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Rutenio/química , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/química
17.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339451

RESUMEN

The synthesis, characterization, and in vitro antiparasitic and anticancer activity evaluation of new conjugates containing two and three dinuclear trithiolato-bridged ruthenium(II)-arene units are presented. Antiparasitic activity was evaluated using transgenic Toxoplasmagondii tachyzoites constitutively expressing ß-galactosidase grown in human foreskin fibroblasts (HFF). The compounds inhibited T.gondii proliferation with IC50 values ranging from 90 to 539 nM, and seven derivatives displayed IC50 values lower than the reference compound pyrimethamine, which is currently used for treatment of toxoplasmosis. Overall, compound flexibility and size impacted on the anti-Toxoplasma activity. The anticancer activity of 14 compounds was assessed against cancer cell lines A2780, A2780cisR (human ovarian cisplatin sensitive and resistant), A24, (D-)A24cisPt8.0 (human lung adenocarcinoma cells wild type and cisPt resistant subline). The compounds displayed IC50 values ranging from 23 to 650 nM. In A2780cisR, A24 and (D-)A24cisPt8.0 cells, all compounds were considerably more cytotoxic than cisplatin, with IC50 values lower by two orders of magnitude. Irrespective of the nature of the connectors (alkyl/aryl) or the numbers of the di-ruthenium units (two/three), ester conjugates 6-10 and 20 exhibited similar antiproliferative profiles, and were more cytotoxic than amide analogues 11-14, 23, and 24. Polynuclear conjugates with multiple trithiolato-bridged di-ruthenium(II)-arene moieties deserve further investigation.

18.
Front Vet Sci ; 7: 587570, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195616

RESUMEN

Exposure of Neospora caninum tachyzoites to BKI-1294 in vitro results in the formation of long-lived multinucleated complexes (MNCs). However, in vivo treatment of BALB/c mice with BKI-1294 shortly after N. caninum infection during pregnancy was safe and profoundly reduced pup mortality and vertical transmission. We hypothesized that the formation of MNCs could trigger immune responses that contribute to BKI efficacy in vivo. In this study, mice were first vaccinated with a sublethal dose of N. caninum tachyzoites and were treated with BKI-1294. We then investigated the effects of these treatments after mating and re-infection during pregnancy. Effects on fertility, pup survival, vertical transmission, and parasite load in dams were evaluated. Cytokines in sera or splenocyte culture supernatants were assessed by either ELISA or the Luminex™ 200 system, and humoral immune responses against tachyzoite and MNC antigens were compared by ELISA, Western blotting and immunoproteomics. Our results showed that BKI-1294 treatment of live-vaccinated mice reduced the cerebral parasite load in the dams, but resulted in higher neonatal pup mortality and vertical transmission. In live-vaccinated mice, cytokine levels, most notably IFN-y, IL-10, and IL-12, were consistently lower in BKI-1294 treated animals compared to non-treated mice. In addition, comparative Western blotting identified two protein bands in MNC extracts that were only recognized by sera of live-vaccinated mice treated with BKI-1294, and were not found in tachyzoite extracts. We conclude that treatment of live-vaccinated mice with BKI-1294 influenced the cellular and humoral immune responses against infection, affected the safety of the live-vaccine, and decreased protection against re-infection and vertical transmission during pregnancy.

19.
PLoS Negl Trop Dis ; 14(5): e0007640, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32442168

RESUMEN

We present a comprehensive analysis of the hepatic miRNA transcriptome at one month post-infection of experimental primary alveolar echinococcosis (AE), a parasitic infection caused upon ingestion of E. multilocularis eggs. Liver tissues were collected from infected and non-infected C57BL/6 mice, then small RNA libraries were prepared for next-generation sequencing (NGS). We conducted a Stem-loop RT-qPCR for validation of most dysregulated miRNAs. In infected mice, the expression levels of 28 miRNAs were significantly altered. Of these, 9 were up-regulated (fold change (FC) ≥ 1.5) and 19 were down-regulated (FC ≤ 0.66) as compared to the non-infected controls. In infected livers, mmu-miR-148a-3p and mmu-miR-101b-3p were 8- and 6-fold down-regulated, respectively, and the expression of mmu-miR-22-3p was reduced by 50%, compared to non-infected liver tissue. Conversely, significantly higher hepatic levels were noted for Mus musculus (mmu)-miR-21a-5p (FC = 2.3) and mmu-miR-122-5p (FC = 1.8). In addition, the relative mRNA expression levels of five genes (vegfa, mtor, hif1-α, fasn and acsl1) that were identified as targets of down-regulated miRNAs were significantly enhanced. All the five genes exhibited a higher expression level in livers of E. multilocularis infected mice compared to non-infected mice. Finally, we studied the issue related to functionally mature arm selection preference (5p and/or 3p) from the miRNA precursor and showed that 9 pre-miRNAs exhibited different arm selection preferences in normal versus infected liver tissues. In conclusion, this study provides first evidence that miRNAs are regulated early in primary murine AE. Our findings raise intriguing questions such as (i) how E. multilocularis affects hepatic miRNA expression;(ii) what are the alterations in miRNA expression patterns in more advanced AE-stages; and (iii) which hepatic cellular, metabolic and/or immunologic processes are modulated through altered miRNAs in AE. Thus, further research on the regulation of miRNAs during AE is needed, since miRNAs constitute an attractive potential option for development of novel therapeutic approaches against AE.


Asunto(s)
Equinococosis/genética , Echinococcus multilocularis/fisiología , Hígado/metabolismo , MicroARNs/metabolismo , Óvulo/crecimiento & desarrollo , Animales , Equinococosis/metabolismo , Equinococosis/parasitología , Echinococcus multilocularis/crecimiento & desarrollo , Femenino , Humanos , Hígado/parasitología , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Óvulo/fisiología
20.
Chembiochem ; 21(19): 2818-2835, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32347622

RESUMEN

The synthesis, characterization, photophysical and biological properties of 13 new conjugate coumarin-diruthenium(II)⋅arene complexes against Toxoplasma gondii are presented. For all conjugate organometallic unit/coumarins, an almost complete loss of fluorescence efficacy was observed. However, the nature of the fluorophore, the type of bonding, the presence and length of a linker between the coumarin dye and the ruthenium(II) moiety, and the number of dye units influenced their biological properties. The in vitro activity against a transgenic T. gondii strain grown in human foreskin fibroblasts (HFF) leads to IC50 values for T. gondii ß-gal from 105 to 735 nM. Of note is that nine compounds displayed lower IC50 than the standard drug pyrimethamine. One compound applied at its IC50 did not affect B-cell proliferation but had an impact on T-cell proliferation in murine splenocyte cultures. Transmission electron microscopy of T. gondii ß-gal-infected HFF showed that treatment predominantly affected the parasites' mitochondrion.


Asunto(s)
Antiparasitarios/farmacología , Complejos de Coordinación/farmacología , Cumarinas/farmacología , Rutenio/farmacología , Compuestos de Sulfhidrilo/farmacología , Toxoplasma/efectos de los fármacos , Animales , Antiparasitarios/síntesis química , Antiparasitarios/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Cumarinas/química , Cristalografía por Rayos X , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Procesos Fotoquímicos , Rutenio/química , Compuestos de Sulfhidrilo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA