Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sci Rep ; 11(1): 330, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33432003

RESUMEN

The development of ductal structures during branching morphogenesis relies on signals that specify ductal progenitors to set up a pattern for the ductal network. Here, we identify cellular asymmetries defined by the F-actin cytoskeleton and the cell adhesion protein ZO-1 as the earliest determinants of duct specification in the embryonic submandibular gland (SMG). Apical polarity protein aPKCζ is then recruited to the sites of asymmetry in a ZO-1-dependent manner and collaborates with ROCK signaling to set up apical-basal polarity of ductal progenitors and further define the path of duct specification. Moreover, the motor protein myosin IIB, a mediator of mechanical force transmission along actin filaments, becomes localized to vertices linking the apical domains of multiple ductal epithelial cells during the formation of ductal lumens and drives duct maturation. These studies identify cytoskeletal, junctional and polarity proteins as the early determinants of duct specification and the patterning of a ductal tree during branching morphogenesis of the SMG.


Asunto(s)
Morfogénesis , Glándula Submandibular/embriología , Actinas/metabolismo , Animales , Adhesión Celular , Ratones , Proteína Quinasa C/metabolismo , Glándula Submandibular/citología , Glándula Submandibular/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Quinasas Asociadas a rho/metabolismo
2.
Glycobiology ; 24(7): 579-91, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24742667

RESUMEN

N-Linked glycosylation (N-glycosylation) of proteins has long been associated with oncogenesis, but not until recently have the molecular mechanisms underlying this relationship begun to be unraveled. Here, we review studies describing how dysregulation of the N-glycosylation-regulating gene, DPAGT1, drives oral cancer. DPAGT1 encodes the first and rate-limiting enzyme in the assembly of the lipid-linked oligosaccharide precursor in the endoplasmic reticulum and thus mediates N-glycosylation of many cancer-related proteins. DPAGT1 controls N-glycosylation of E-cadherin, the major epithelial cell-cell adhesion receptor and a tumor suppressor, thereby affecting intercellular adhesion and cytoskeletal dynamics. DPAGT1 also regulates and is regulated by Wnt/ß-catenin signaling, impacting the balance between proliferation and adhesion in homeostatic tissues. Thus, aberrant induction of DPAGT1 promotes a positive feedback network with Wnt/ß-catenin that represses E-cadherin-based adhesion and drives tumorigenic phenotypes. Further, modification of receptor tyrosine kinases (RTKs) with N-glycans is known to control their surface presentation via the galectin lattice, and thus increased DPAGT1 expression likely contributes to abnormal activation of RTKs in oral cancer. Collectively, these studies suggest that dysregulation of the DPAGT1/Wnt/E-cadherin network underlies the etiology and pathogenesis of oral cancer.


Asunto(s)
Cadherinas/metabolismo , Neoplasias de la Boca/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Vía de Señalización Wnt , Animales , Adhesión Celular , Retroalimentación Fisiológica , Glicosilación , Humanos , Neoplasias de la Boca/enzimología
3.
Lab Invest ; 93(11): 1203-18, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24080911

RESUMEN

Sjogren's syndrome (SS) is a complex autoimmune disease that primarily affects salivary and lacrimal glands and is associated with high morbidity. Although the prevailing dogma is that immune system pathology drives SS, increasing evidence points to structural defects, including defective E-cadherin adhesion, to be involved in its etiology. We have shown that E-cadherin has pivotal roles in the development of the mouse salivary submandibular gland (SMG) by organizing apical-basal polarity in acinar and ductal progenitors and by signaling survival for differentiating duct cells. Recently, E-cadherin junctions have been shown to interact with effectors of the Hippo signaling pathway, a core pathway regulating the organ size, cell proliferation, and differentiation. We now show that Hippo signaling is required for SMG-branching morphogenesis and is involved in the pathophysiology of SS. During SMG development, a Hippo pathway effector, TAZ, becomes increasingly phosphorylated and associated with E-cadherin and α-catenin, consistent with the activation of Hippo signaling. Inhibition of Lats2, an upstream kinase that promotes TAZ phosphorylation, results in dysmorphogenesis of the SMG and impaired duct formation. SMGs from non-obese diabetic mice, a mouse model for SS, phenocopy the Lats2-inhibited SMGs and exhibit a reduction in E-cadherin junctional components, including TAZ. Importantly, labial specimens from human SS patients display mislocalization of TAZ from junctional regions to the nucleus, coincident with accumulation of extracellular matrix components, fibronectin and connective tissue growth factor, known downstream targets of TAZ. Our studies show that Hippo signaling has a crucial role in SMG-branching morphogenesis and provide evidence that defects in this pathway are associated with SS in humans.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Síndrome de Sjögren/etiología , Síndrome de Sjögren/metabolismo , Glándula Submandibular/embriología , Glándula Submandibular/metabolismo , Aciltransferasas , Animales , Cadherinas/metabolismo , Estudios de Casos y Controles , Polaridad Celular , Modelos Animales de Enfermedad , Vía de Señalización Hippo , Humanos , Ratones , Ratones Endogámicos NOD , Morfogénesis , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , Transducción de Señal , Síndrome de Sjögren/patología , Glándula Submandibular/anomalías , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , alfa Catenina/metabolismo
4.
J Biol Chem ; 288(28): 20217-27, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23703614

RESUMEN

Oral squamous cell carcinoma (OSCC) is one of the most pernicious malignancies, but the mechanisms underlying its development and progression are poorly understood. One of the key pathways implicated in OSCC is the canonical Wnt/ß-catenin signaling pathway. Previously, we reported that canonical Wnt signaling functions in a positive feedback loop with the DPAGT1 gene, a principal regulator of the metabolic pathway of protein N-glycosylation, to hyperglycosylate E-cadherin and reduce intercellular adhesion. Here, we show that in OSCC, DPAGT1 and canonical Wnt signaling converge to up-regulate CTHRC1 (collagen triple helix repeat containing 1), an N-glycoprotein implicated in tumor invasion and metastasis. We found that in human OSCC specimens, amplification of the levels of CTHRC1 was associated with its hyperglycosylation. Partial inhibition of DPAGT1 expression in OSCC CAL27 cells reduced CTHRC1 abundance by increasing protein turnover, indicating that N-glycosylation stabilizes CTHRC1. Additionally, canonical Wnt signaling promoted ß-catenin/T-cell factor transcriptional activity at the CTHRC1 promoter to further elevate CTHRC1 levels. We demonstrate that DPAGT1 promotes cell migration and drives the localization of CTHRC1 to cells at the leading edge of a wound front coincident with drastic changes in cell morphology. We propose that in OSCC, dysregulation of canonical Wnt signaling and DPAGT1-dependent N-glycosylation induces CTHRC1, thereby driving OSCC cell migration and tumor spread.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Movimiento Celular , Proteínas de la Matriz Extracelular/metabolismo , Neoplasias de la Boca/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proteínas de la Matriz Extracelular/genética , Regulación Neoplásica de la Expresión Génica , Glicosilación , Humanos , Immunoblotting , Microscopía Confocal , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Transcripción TCF/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
5.
J Cell Sci ; 126(Pt 2): 484-96, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23178939

RESUMEN

The metabolic pathway of protein N-glycosylation influences intercellular adhesion by affecting the composition and cytoskeletal association of E-cadherin protein complexes, or adherens junctions (AJs). In sparse cells, E-cadherin is modified extensively with complex N-glycans and forms nascent AJs, while in dense cultures, hypoglycosylated E-cadherin drives the assembly of mature AJs with increased levels of γ- and α-catenins. N-glycosylation of E-cadherin is controlled by the DPAGT1 gene, a key regulator of the N-glycosylation pathway. DPAGT1 is a target of the canonical Wnt signaling pathway, with both ß- and γ-catenins binding to Tcf at its promoter. We now report that DPAGT1 senses cell density through canonical Wnt signaling. In dense cells, depletion of ß-catenin from the DPAGT1 promoter correlated with downregulation of its cellular abundance, while loss of nuclear γ-catenin reflected its greater recruitment to AJs. DPAGT1 itself affected canonical Wnt signaling, with forced changes in its expression resulting in corresponding changes in transcriptionally active ß-catenin and canonical Wnt activity. Remarkably, a 2.4-fold increase in the DPAGT1 mRNA level resulted in increased N-glycosylation and reduced membrane localization of E-cadherin, coincident with dramatic changes in cell morphology. Lastly, we present evidence that N-glycosylation status of E-cadherin controls its antagonism of canonical Wnt signaling. Transfection of hypoglycosylated E-cadherin mutant, V13, but not fully N-glycosylated E-cadherin, into sparse cells inhibited canonical Wnt activity by depleting nuclear ß- and γ-catenins. Collectively, our studies show that cells coordinate DPAGT1 expression and protein N-glycosylation with canonical Wnt signaling and E-cadherin adhesion via positive and negative feedback mechanisms.


Asunto(s)
Cadherinas/metabolismo , Adhesión Celular/genética , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas Wnt/metabolismo , Animales , Cadherinas/genética , Adhesión Celular/fisiología , Perros , Glicosilación , Humanos , Células de Riñón Canino Madin Darby , N-Acetilglucosaminiltransferasas/genética , Transducción de Señal , Proteínas Wnt/genética
6.
Oral Oncol ; 48(6): 523-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22341307

RESUMEN

Oral cancer is one of the most aggressive epithelial malignancies, whose incidence is on the rise. Previous studies have shown that in a subset of human oral squamous cell carcinoma (OSCC) tumor specimens, overexpression of the DPAGT1 gene, encoding the dolichol-P-dependent N-acetylglucoseamine-1-phosphate transferase, a key regulator of the metabolic pathway of protein N-glycosylation, drives tumor cell discohesion by inhibiting E-cadherin adhesive function. Recently, we reported that DPAGT1 was a target of the canonical Wnt signaling pathway. Here, we link overexpression of DPAGT1 in human OSCC tumor specimens to aberrant activation of canonical Wnt signaling. We report dramatic increases in ß- and γ-catenins at the DPAGT1 promoter and correlate them with reduced expression of a Wnt inhibitor, Dickkopf-1 (Dkk-1). Using human squamous carcinoma cell lines of the head and neck, we show that partial inhibition of DPAGT1 reduces canonical Wnt signaling, indicating that DPAGT1 and canonical Wnt signaling function in a positive feedback loop. We provide evidence that E-cadherin inhibits DPAGT1, canonical Wnt signaling and the OSCC cancer phenotype by depleting nuclear ß- and γ-catenins, with hypoglycosylated E-cadherin being the most effective. This suggests that in human OSCC, extensive N-glycosylation of E-cadherin compromises its ability to inhibit canonical Wnt signaling and DPAGT1 expression. Our studies reveal a novel interplay between DPAGT1/N-glycosylation and canonical Wnt signaling and suggest that dysregulation of this crosstalk is a key mechanism underlying OSCC. They also suggest that partial inhibition of DPAGT1 may represent an effective way to restore normal interactions among these essential pathways in oral cancer.


Asunto(s)
Carcinoma de Células Escamosas/genética , Neoplasias de la Boca/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/genética , Cadherinas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glicosilación , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias de la Boca/metabolismo , Proteínas Wnt/genética , beta Catenina/metabolismo , gamma Catenina/metabolismo
7.
J Biol Chem ; 285(41): 31164-73, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20693288

RESUMEN

Protein N-glycosylation and the Wnt/ß-catenin signaling pathways play critical roles in development and cancer. Although N-glycosylation has been shown to influence Wnt signaling through its effects on Wnt ligands, it is unclear whether the Wnt/ß-catenin pathway impacts protein N-glycosylation. In this study, we show that promoters of the first N-glycosylation gene, DPAGT1, from Chinese hamster ovary (CHO), Madin-Darby canine kidney (MDCK), and human epidermoid carcinoma (A253) cells contain the T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) consensus sequence. Treatment of cells with a Wnt activator, lithium chloride, up-regulated DPAGT1 transcript levels that correlated with an increase in the ß-catenin abundance. Furthermore, exposure of cells to a Wnt receptor ligand, Wnt3a, resulted in an increase in the DPAGT1 transcript levels that was abrogated by the Wnt inhibitor, Dickkopf-1. DNA mobility shift assays revealed specific protein complexes at the DPAGT1 TCF/LEF binding region that were competed off with antibodies to either Tcf3/4 or ß-catenin. Chromatin immunoprecipitation analysis confirmed the presence of ß-catenin at the DPAGT1 promoter in vivo. In addition, the DPAGT1 TCF/LEF sequence drove the expression of the luciferase reporter gene. Furthermore, up-regulation of DPAGT1 transcripts by Wnt3a led to altered N-glycosylation of E-cadherin. Interestingly, the DPAGT1 TCF/LEF sequence also interacted with γ-catenin, a close homologue of ß-catenin, although not in a lithium chloride-dependent manner. Our results provide the first evidence that the Wnt/ß-catenin signaling pathway regulates the metabolic pathway of protein N-glycosylation by targeting DPAGT1 expression. Moreover, they suggest the existence of another regulatory mechanism involving the interaction of Tcf with γ-catenin at the DPAGT1 promoter.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , N-Acetilglucosaminiltransferasas/biosíntesis , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Adyuvantes Inmunológicos/farmacología , Secuencias de Aminoácidos , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células CHO , Cadherinas/genética , Cadherinas/metabolismo , Cricetinae , Cricetulus , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Perros , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glicosilación/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Cloruro de Litio/farmacología , N-Acetilglucosaminiltransferasas/genética , Regiones Promotoras Genéticas/fisiología , Transducción de Señal/efectos de los fármacos , Factor de Transcripción 4 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Wnt/genética , Proteína Wnt3 , Proteína Wnt3A , beta Catenina/genética , gamma Catenina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA