Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Blood Adv ; 8(8): 1981-1990, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38507738

RESUMEN

ABSTRACT: Bruton's tyrosine kinase (BTK) is an enzyme needed for B-cell survival, and its inhibitors have become potent targeted medicines for the treatment of B-cell malignancies. The initial activation event of cytoplasmic protein-tyrosine kinases is the phosphorylation of a conserved regulatory tyrosine in the catalytic domain, which in BTK is represented by tyrosine 551. In addition, the tyrosine 223 (Y223) residue in the SRC homology 3 (SH3) domain has, for more than 2 decades, generally been considered necessary for full enzymatic activity. The initial recognition of its potential importance stems from transformation assays using nonlymphoid cells. To determine the biological significance of this residue, we generated CRISPR-Cas-mediated knockin mice carrying a tyrosine to phenylalanine substitution (Y223F), maintaining aromaticity and bulkiness while prohibiting phosphorylation. Using a battery of assays to study leukocyte subsets and the morphology of lymphoid organs, as well as the humoral immune responses, we were unable to detect any difference between wild-type mice and the Y223F mutant. Mice resistant to irreversible BTK inhibitors, through a cysteine 481 to serine substitution (C481S), served as an additional immunization control and mounted similar humoral immune responses as Y223F and wild-type animals. Collectively, our findings suggest that phosphorylation of Y223 serves as a useful proxy for phosphorylation of phospholipase Cγ2 (PLCG2), the endogenous substrate of BTK. However, in contrast to a frequently held conception, this posttranslational modification is dispensable for the function of BTK.


Asunto(s)
Proteínas Tirosina Quinasas , Dominios Homologos src , Ratones , Animales , Agammaglobulinemia Tirosina Quinasa , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Secuencia de Aminoácidos , Tirosina
3.
Nat Commun ; 14(1): 3092, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248239

RESUMEN

In this study we use comparative genomics to uncover a gene with uncharacterized function (1700011H14Rik/C14orf105/CCDC198), which we hereby name FAME (Factor Associated with Metabolism and Energy). We observe that FAME shows an unusually high evolutionary divergence in birds and mammals. Through the comparison of single nucleotide polymorphisms, we identify gene flow of FAME from Neandertals into modern humans. We conduct knockout experiments on animals and observe altered body weight and decreased energy expenditure in Fame knockout animals, corresponding to genome-wide association studies linking FAME with higher body mass index in humans. Gene expression and subcellular localization analyses reveal that FAME is a membrane-bound protein enriched in the kidneys. Although the gene knockout results in structurally normal kidneys, we detect higher albumin in urine and lowered ferritin in the blood. Through experimental validation, we confirm interactions between FAME and ferritin and show co-localization in vesicular and plasma membranes.


Asunto(s)
Metabolismo Energético , Estudio de Asociación del Genoma Completo , Animales , Humanos , Peso Corporal , Metabolismo Energético/genética , Ferritinas/genética , Riñón , Hombre de Neandertal
4.
Blood ; 142(1): 73-89, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37018663

RESUMEN

Although tyrosine kinase inhibitors (TKIs) are effective in treating chronic myeloid leukemia (CML), they often fail to eradicate the leukemia-initiating stem cells (LSCs), causing disease persistence and relapse. Evidence indicates that LSC persistence may be because of bone marrow (BM) niche protection; however, little is known about the underlying mechanisms. Herein, we molecularly and functionally characterize BM niches in patients with CML at diagnosis and reveal the altered niche composition and function in these patients. Long-term culture initiating cell assay showed that the mesenchymal stem cells from patients with CML displayed an enhanced supporting capacity for normal and CML BM CD34+CD38- cells. Molecularly, RNA sequencing detected dysregulated cytokine and growth factor expression in the BM cellular niches of patients with CML. Among them, CXCL14 was lost in the BM cellular niches in contrast to its expression in healthy BM. Restoring CXCL14 significantly inhibited CML LSC maintenance and enhanced their response to imatinib in vitro, and CML engraftment in vivo in NSG-SGM3 mice. Importantly, CXCL14 treatment dramatically inhibited CML engraftment in patient-derived xenografted NSG-SGM3 mice, even to a greater degree than imatinib, and this inhibition persisted in patients with suboptimal TKI response. Mechanistically, CXCL14 upregulated inflammatory cytokine signaling but downregulated mTOR signaling and oxidative phosphorylation in CML LSCs. Together, we have discovered a suppressive role of CXCL14 in CML LSC growth. CXCL14 might offer a treatment option targeting CML LSCs.


Asunto(s)
Médula Ósea , Leucemia Mielógena Crónica BCR-ABL Positiva , Animales , Ratones , Médula Ósea/metabolismo , Quimiocinas CXC/metabolismo , Quimiocinas CXC/farmacología , Quimiocinas CXC/uso terapéutico , Citocinas/metabolismo , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Células Madre Neoplásicas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal
5.
EMBO J ; 41(17): e108780, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35815410

RESUMEN

Schwann cell precursors (SCPs) are nerve-associated progenitors that can generate myelinating and non-myelinating Schwann cells but also are multipotent like the neural crest cells from which they originate. SCPs are omnipresent along outgrowing peripheral nerves throughout the body of vertebrate embryos. By using single-cell transcriptomics to generate a gene expression atlas of the entire neural crest lineage, we show that early SCPs and late migratory crest cells have similar transcriptional profiles characterised by a multipotent "hub" state containing cells biased towards traditional neural crest fates. SCPs keep diverging from the neural crest after being primed towards terminal Schwann cells and other fates, with different subtypes residing in distinct anatomical locations. Functional experiments using CRISPR-Cas9 loss-of-function further show that knockout of the common "hub" gene Sox8 causes defects in neural crest-derived cells along peripheral nerves by facilitating differentiation of SCPs towards sympathoadrenal fates. Finally, specific tumour populations found in melanoma, neurofibroma and neuroblastoma map to different stages of SCP/Schwann cell development. Overall, SCPs resemble migrating neural crest cells that maintain multipotency and become transcriptionally primed towards distinct lineages.


Asunto(s)
Cresta Neural , Células de Schwann , Diferenciación Celular/fisiología , Neurogénesis/fisiología , Nervios Periféricos , Células de Schwann/metabolismo
6.
Front Immunol ; 13: 854312, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757763

RESUMEN

Natural killer (NK) cells play roles in viral clearance and early surveillance against malignant transformation, yet our knowledge of the underlying mechanisms controlling their development and functions remain incomplete. To reveal cell fate-determining pathways in NK cell progenitors (NKP), we utilized an unbiased approach and generated comprehensive gene expression profiles of NK cell progenitors. We found that the NK cell program was gradually established in the CLP to preNKP and preNKP to rNKP transitions. In line with FOXO1 and FOXO3 being co-expressed through the NK developmental trajectory, the loss of both perturbed the establishment of the NK cell program and caused stalling in both NK cell development and maturation. In addition, we found that the combined loss of FOXO1 and FOXO3 caused specific changes to the composition of the non-cytotoxic innate lymphoid cell (ILC) subsets in bone marrow, spleen, and thymus. By combining transcriptome and chromatin profiling, we revealed that FOXO TFs ensure proper NK cell development at various lineage-commitment stages through orchestrating distinct molecular mechanisms. Combined FOXO1 and FOXO3 deficiency in common and innate lymphoid cell progenitors resulted in reduced expression of genes associated with NK cell development including ETS-1 and their downstream target genes. Lastly, we found that FOXO1 and FOXO3 controlled the survival of committed NK cells via gene regulation of IL-15Rß (CD122) on rNKPs and bone marrow NK cells. Overall, we revealed that FOXO1 and FOXO3 function in a coordinated manner to regulate essential developmental genes at multiple stages during murine NK cell and ILC lineage commitment.


Asunto(s)
Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Células Asesinas Naturales , Células Progenitoras Linfoides , Animales , Diferenciación Celular/inmunología , Proteína Forkhead Box O1/inmunología , Proteína Forkhead Box O3/inmunología , Inmunidad Innata , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Células Progenitoras Linfoides/citología , Células Progenitoras Linfoides/inmunología , Ratones , Ratones Endogámicos C57BL
7.
Front Immunol ; 13: 880668, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35603175

RESUMEN

The development of B cells relies on an intricate network of transcription factors critical for developmental progression and lineage commitment. In the B cell developmental trajectory, a temporal switch from predominant Foxo3 to Foxo1 expression occurs at the CLP stage. Utilizing VAV-iCre mediated conditional deletion, we found that the loss of FOXO3 impaired B cell development from LMPP down to B cell precursors, while the loss of FOXO1 impaired B cell commitment and resulted in a complete developmental block at the CD25 negative proB cell stage. Strikingly, the combined loss of FOXO1 and FOXO3 resulted in the failure to restrict the myeloid potential of CLPs and the complete loss of the B cell lineage. This is underpinned by the failure to enforce the early B-lineage gene regulatory circuitry upon a predominantly pre-established open chromatin landscape. Altogether, this demonstrates that FOXO3 and FOXO1 cooperatively govern early lineage restriction and initiation of B-lineage commitment in CLPs.


Asunto(s)
Hematopoyesis , Células Progenitoras Linfoides , Linfocitos B/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Hematopoyesis/genética , Células Progenitoras Linfoides/metabolismo , Células Precursoras de Linfocitos B/metabolismo
8.
Curr Biol ; 32(12): 2596-2609.e7, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35561678

RESUMEN

Reef-building corals are endangered animals with a complex colonial organization. Physiological mechanisms connecting multiple polyps and integrating them into a coral colony are still enigmatic. Using live imaging, particle tracking, and mathematical modeling, we reveal how corals connect individual polyps and form integrated polyp groups via species-specific, complex, and stable networks of currents at their surface. These currents involve surface mucus of different concentrations, which regulate joint feeding of the colony. Inside the coral, within the gastrovascular system, we expose the complexity of bidirectional branching streams that connect individual polyps. This system of canals extends the surface area by 4-fold and might improve communication, nutrient supply, and symbiont transfer. Thus, individual polyps integrate via complex liquid dynamics on the surface and inside the colony.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Arrecifes de Coral , Ambiente , Especificidad de la Especie
9.
J Vis Exp ; (176)2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34779437

RESUMEN

Mouse and human teeth represent challenging organs for quick and efficient cell isolation for single-cell transcriptomic or other applications. The dental pulp tissue, rich in the extracellular matrix, requires a long and tedious dissociation process that is typically beyond the reasonable time for single-cell transcriptomics. For avoiding artificial changes in gene expression, the time elapsed from euthanizing an animal until the analysis of single cells needs to be minimized. This work presents a fast protocol enabling to obtain single-cell suspension from mouse and human teeth in an excellent quality suitable for scRNA-seq (single-cell RNA-sequencing). This protocol is based on accelerated tissue isolation steps, enzymatic digestion, and subsequent preparation of final single-cell suspension. This enables fast and gentle processing of tissues and allows using more animal or human samples for obtaining cell suspensions with high viability and minimal transcriptional changes. It is anticipated that this protocol might guide researchers interested in performing the scRNA-seq not only on the mouse or human teeth but also on other extracellular matrix-rich tissues, including cartilage, dense connective tissue, and dermis.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Animales , Perfilación de la Expresión Génica/métodos , Humanos , Ratones , ARN , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma
10.
Nat Genet ; 53(5): 694-706, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33833454

RESUMEN

Characterization of the progression of cellular states during human embryogenesis can provide insights into the origin of pediatric diseases. We examined the transcriptional states of neural crest- and mesoderm-derived lineages differentiating into adrenal glands, kidneys, endothelium and hematopoietic tissue between post-conception weeks 6 and 14 of human development. Our results reveal transitions connecting the intermediate mesoderm and progenitors of organ primordia, the hematopoietic system and endothelial subtypes. Unexpectedly, by using a combination of single-cell transcriptomics and lineage tracing, we found that intra-adrenal sympathoblasts at that stage are directly derived from nerve-associated Schwann cell precursors, similarly to local chromaffin cells, whereas the majority of extra-adrenal sympathoblasts arise from the migratory neural crest. In humans, this process persists during several weeks of development within the large intra-adrenal ganglia-like structures, which may also serve as reservoirs of originating cells in neuroblastoma.


Asunto(s)
Linaje de la Célula , Embrión de Mamíferos/metabolismo , Neuroblastoma/embriología , Neuroblastoma/genética , Análisis de la Célula Individual , Sistema Simpatoadrenal/embriología , Transcriptoma/genética , Animales , Células Cromafines/metabolismo , Células Cromafines/patología , Análisis por Conglomerados , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Lactante , Ratones , Células-Madre Neurales/metabolismo , Neuroblastoma/patología , Células de Schwann/metabolismo , Células de Schwann/patología , Microambiente Tumoral
11.
Blood Adv ; 4(11): 2439-2450, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32492159

RESUMEN

Pharmacological inhibitors of Bruton tyrosine kinase (BTK) have revolutionized treatment of B-lymphocyte malignancies and show great promise for dampening autoimmunity. The predominant BTK inhibitors tether irreversibly by covalently binding to cysteine 481 in the BTK catalytic domain. Substitution of cysteine 481 for serine (C481S) is the most common mechanism for acquired drug resistance. We generated a novel C481S knock-in mouse model and, using a battery of tests, no overt B-lymphocyte phenotype was found. B lymphocytes from C481S animals were resistant to irreversible, but sensitive to reversible, BTK inhibitors. In contrast, irreversible inhibitors equally impaired T-lymphocyte activation in mice, mimicking the effect of treatment in patients. This demonstrates that T-lymphocyte blockage is independent of BTK. We suggest that the C481S knock-in mouse can serve as a useful tool for the study of BTK-independent effects of irreversible inhibitors, allowing for the identification of novel therapeutic targets and pinpointing potential side effects.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Linfocitos B , Inhibidores de Proteínas Quinasas , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación , Inhibidores de Proteínas Quinasas/farmacología
12.
Leukemia ; 34(1): 271-282, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31375745

RESUMEN

Established cell culture systems have failed to accurately recapitulate key features of terminal erythroid maturation, hampering our ability to in vitro model and treat diseases with impaired erythropoiesis such as myelodysplastic syndromes with ring sideroblasts (MDS-RS). We developed an efficient and robust three-dimensional (3D) scaffold culture model supporting terminal erythroid differentiation from both mononuclear (MNC) or CD34+-enriched primary bone marrow cells from healthy donors and MDS-RS patients. While CD34+ cells did not proliferate beyond two weeks in 2D suspension cultures, the 3D scaffolds supported CD34+ and MNC erythroid proliferation over four weeks demonstrating the importance of the 3D environment. CD34+ cells cultured in 3D facilitated the highest expansion and maturation of erythroid cells, including generation of erythroblastic islands and enucleated erythrocytes, while MNCs supported multi-lineage hemopoietic differentiation and cytokine secretion relevant for MDS-RS. Importantly, MDS-RS 3D-cultures supported de novo generation of ring sideroblasts and maintenance of the mutated clone. The 3D cultures effectively model a clonal disease characterized by terminal erythroid failure and can be used to assess therapeutic compounds.


Asunto(s)
Técnicas de Cultivo de Célula , Eritropoyesis , Síndromes Mielodisplásicos , Antígenos CD34 , Diferenciación Celular/fisiología , Células Cultivadas , Células Precursoras Eritroides/citología , Humanos , Células Madre Mesenquimatosas/citología
13.
Front Immunol ; 10: 455, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30936870

RESUMEN

The apparition of adaptive immunity in Gnathostomata correlates with the expansion of the E-protein family to encompass E2-2, HEB, and E2A. Within the family, E2-2 and HEB are more closely evolutionarily related but their concerted action in hematopoiesis remains to be explored. Here we show that the combined disruption of E2-2 and HEB results in failure to express the early lymphoid program in Common lymphoid precursors (CLPs) and a near complete block in B-cell development. In the thymus, Early T-cell progenitors (ETPs) were reduced and T-cell development perturbed, resulting in reduced CD4 T- and increased γδ T-cell numbers. In contrast, hematopoietic stem cells (HSCs), erythro-myeloid progenitors, and innate immune cells were unaffected showing that E2-2 and HEB are dispensable for the ancestral hematopoietic lineages. Taken together, this E-protein dependence suggests that the appearance of the full Gnathostomata E-protein repertoire was critical to reinforce the gene regulatory circuits that drove the emergence and expansion of the lineages constituting humoral immunity.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Regulación de la Expresión Génica/fisiología , Inmunidad Humoral/fisiología , Leucopoyesis/fisiología , Células Progenitoras Linfoides/patología , Factor de Transcripción 4/fisiología , Vertebrados/inmunología , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/inmunología , Evolución Biológica , Linaje de la Célula , Evolución Molecular , Duplicación de Gen , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Subgrupos Linfocitarios/patología , Ratones , Ratones Endogámicos C57BL , Familia de Multigenes , Filogenia , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Bazo/patología , Factor de Transcripción 4/deficiencia , Factor de Transcripción 4/inmunología
14.
Nature ; 567(7747): 234-238, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30814736

RESUMEN

Longitudinal bone growth in children is sustained by growth plates, narrow discs of cartilage that provide a continuous supply of chondrocytes for endochondral ossification1. However, it remains unknown how this supply is maintained throughout childhood growth. Chondroprogenitors in the resting zone are thought to be gradually consumed as they supply cells for longitudinal growth1,2, but this model has never been proved. Here, using clonal genetic tracing with multicolour reporters and functional perturbations, we demonstrate that longitudinal growth during the fetal and neonatal periods involves depletion of chondroprogenitors, whereas later in life, coinciding with the formation of the secondary ossification centre, chondroprogenitors acquire the capacity for self-renewal, resulting in the formation of large, stable monoclonal columns of chondrocytes. Simultaneously, chondroprogenitors begin to express stem cell markers and undergo symmetric cell division. Regulation of the pool of self-renewing progenitors involves the hedgehog and mammalian target of rapamycin complex 1 (mTORC1) signalling pathways. Our findings indicate that a stem cell niche develops postnatally in the epiphyseal growth plate, which provides a continuous supply of chondrocytes over a prolonged period.


Asunto(s)
Condrocitos/citología , Células Clonales/citología , Placa de Crecimiento/citología , Nicho de Células Madre/fisiología , Envejecimiento , Animales , Cartílago/citología , Autorrenovación de las Células , Células Clonales/metabolismo , Femenino , Placa de Crecimiento/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones
15.
Blood Adv ; 2(12): 1480-1494, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29945938

RESUMEN

Despite increasing evidence for the involvement of bone marrow (BM) hematopoietic stem cell niche in leukemogenesis, how BM mesenchymal stem and progenitor cells (MSPCs) contribute to leukemia niche formation and progression remains unclear. Using an MLL-AF9 acute myeloid leukemia (AML) mouse model, we demonstrate dynamic alterations of BM cellular niche components, including MSPCs and endothelial cells during AML development and its association with AML engraftment. Primary patient AML cells also induced similar niche alterations in xenografted mice. AML cell infiltration in BM causes an expansion of early B-cell factor 2+ (Ebf2+) MSPCs with reduced Cxcl12 expression and enhanced generation of more differentiated mesenchymal progenitor cells. Importantly, in vivo fate-mapping indicates that Ebf2+ MSPCs participated in AML niche formation. Ebf2+ cell deletion accelerated the AML development. These data suggest that native BM MSPCs may suppress AML. However, they can be remodeled by AML cells to form leukemic niche that might contribute to AML progression. AML induced dysregulation of hematopoietic niche factors like Angptl1, Cxcl12, Kitl, Il6, Nov, and Spp1 in AML BM MSPCs, which was associated with AML engraftment and partially appeared before the massive expansion of AML cells, indicating the possible involvement of the niche factors in AML progression. Our study demonstrates distinct dynamic features and roles of BM MSPCs during AML development.


Asunto(s)
Carcinogénesis/patología , Leucemia Mieloide Aguda/patología , Células Madre Mesenquimatosas/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Médula Ósea/patología , Ratones , Proteína de la Leucemia Mieloide-Linfoide , Proteínas de Fusión Oncogénica , Nicho de Células Madre/genética , Trasplante Heterólogo , Carga Tumoral , Microambiente Tumoral
16.
Blood Adv ; 2(5): 534-548, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29514790

RESUMEN

Mutations of signal-induced proliferation-associated gene 1 (SIPA1), a RAP1 GTPase-activating protein, were reported in patients with juvenile myelomonocytic leukemia, a childhood myelodysplastic/myeloproliferative neoplasm (MDS/MPN). Sipa1 deficiency in mice leads to the development of age-dependent MPN. However, Sipa1 expression in bone marrow (BM) microenvironment and its effect on the pathogenesis of MPN remain unclear. We here report that Sipa1 is expressed in human and mouse BM stromal cells and downregulated in these cells from patients with MPN or MDS/MPN at diagnosis. By using the Sipa1-/- MPN mouse model, we find that Sipa1 deletion causes phenotypic and functional alterations of BM mesenchymal stem and progenitor cells prior to the initiation of the MPN. Importantly, the altered Sipa1-/- BM niche is required for the development of MDS/MPN following transplantation of normal hematopoietic cells. RNA sequencing reveals an enhanced inflammatory cytokine signaling and dysregulated Dicer1, Kitl, Angptl1, Cxcl12, and Thpo in the Sipa1-/- BM cellular niches. Our data suggest that Sipa1 expression in the BM niche is critical for maintaining BM niche homeostasis. Moreover, Sipa1 loss-induced BM niche alterations likely enable evolution of clonal hematopoiesis to the hematological malignancies. Therefore, restoring Sipa1 expression or modulating the altered signaling pathways involved might offer therapeutic potential for MPN.


Asunto(s)
Células de la Médula Ósea/patología , Proteínas Activadoras de GTPasa/deficiencia , Leucemia/etiología , Trastornos Mieloproliferativos/etiología , Proteínas Nucleares/deficiencia , Nicho de Células Madre , Animales , Homeostasis , Humanos , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos C57BL
17.
FASEB J ; 31(3): 1067-1084, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27965322

RESUMEN

Articular cartilage has little regenerative capacity. Recently, genetic lineage tracing experiments have revealed chondrocyte progenitors at the articular surface. We further characterized these progenitors by using in vivo genetic approaches. Histone H2B-green fluorescent protein retention revealed that superficial cells divide more slowly than underlying articular chondrocytes. Clonal genetic tracing combined with immunohistochemistry revealed that superficial cells renew their number by symmetric division, express mesenchymal stem cell markers, and generate chondrocytes via both asymmetric and symmetric differentiation. Quantitative analysis of cellular kinetics, in combination with phosphotungstic acid-enhanced micro-computed tomography, showed that superficial cells generate chondrocytes and contribute to the growth and reshaping of articular cartilage. Furthermore, we found that cartilage renewal occurs as the progeny of superficial cells fully replace fetal chondrocytes during early postnatal life. Thus, superficial cells are self-renewing progenitors that are capable of maintaining their own population and fulfilling criteria of unipotent adult stem cells. Furthermore, the progeny of these cells reconstitute adult articular cartilage de novo, entirely substituting fetal chondrocytes.-Li, L., Newton, P. T., Bouderlique, T., Sejnohova, M., Zikmund, T., Kozhemyakina, E., Xie, M., Krivanek, J., Kaiser, J., Qian, H., Dyachuk, V., Lassar, A. B., Warman, M. L., Barenius, B., Adameyko, I., Chagin, A. S. Superficial cells are self-renewing chondrocyte progenitors, which form the articular cartilage in juvenile mice.


Asunto(s)
Células Madre Adultas/citología , Cartílago Articular/citología , Condrocitos/citología , Condrogénesis , Animales , Cartílago Articular/fisiología , Ratones , Regeneración
18.
Ann Rheum Dis ; 75(3): 627-31, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26438374

RESUMEN

OBJECTIVES: It has been suggested that the lysosomal recycling process called macro-autophagy plays a role in osteoarthritis development. We thus decided to genetically ablate the autophagy-indispensable Atg5 gene specifically in chondrocytes and analyse the development of osteoarthritis upon aging and in a post-traumatic model. METHODS: Mice lacking the Atg5 gene in their chondrocytes (Atg5cKO) were generated by crossing Atg5-floxed mice with transgenic mice that expressed cre recombinase driven by the collagen type 2 promoter. Animals were analysed at the age of 2, 6 and 12 months for age-related osteoarthritis or underwent mini-open partial medial meniscectomy at 2 months of age and were analysed 1 or 2 months after surgery. We evaluated osteoarthritis using the Osteoarthritis Research Society International (OARSI) scoring on safranin-O-stained samples. Cell death was evaluated by terminal deoxy-nucleotidyl-transferase-mediated deoxy-UTP nick end labelling (TUNEL) and by immunostaining of cleaved caspases. RESULTS: We observed the development of osteoarthritis in Atg5cKO mice with aging including fibrillation and loss of proteoglycans, which was particularly severe in males. The ablation of Atg5 was associated with an increased cell death as assessed by TUNEL, cleaved caspase 3 and cleaved caspase 9. Surprisingly, no difference in the development of post-traumatic osteoarthritis was observed between Atg5cKO and control mice. CONCLUSIONS: Autophagy protects from age-related osteoarthritis by facilitating chondrocyte survival.


Asunto(s)
Autofagia/genética , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Osteoartritis/genética , Animales , Proteína 5 Relacionada con la Autofagia , Cartílago Articular/citología , Caspasas/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Osteoartritis/metabolismo , Proteoglicanos/metabolismo , Lesiones de Menisco Tibial
19.
Autophagy ; 11(9): 1594-607, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26259639

RESUMEN

Mechanistic target of rapamycin (serine/threonine kinase) complex 1 (MTORC1) is a protein-signaling complex at the fulcrum of anabolic and catabolic processes, which acts depending on wide-ranging environmental cues. It is generally accepted that lysosomes facilitate MTORC1 activation by generating an internal pool of amino acids. Amino acids activate MTORC1 by stimulating its translocation to the lysosomal membrane where it forms a super-complex involving the lysosomal-membrane-bound vacuolar-type H(+)-ATPase (v-ATPase) proton pump. This translocation and MTORC1 activation require functional lysosomes. Here we found that, in contrast to this well-accepted concept, in epiphyseal chondrocytes inhibition of lysosomal activity by v-ATPase inhibitors bafilomycin A1 or concanamycin A potently activated MTORC1 signaling. The activity of MTORC1 was visualized by phosphorylated forms of RPS6 (ribosomal protein S6) and EIF4EBP1, 2 well-known downstream targets of MTORC1. Maximal RPS6 phosphorylation was observed at 48-h treatment and reached as high as a 12-fold increase (p < 0.018). This activation of MTORC1 was further confirmed in bone organ culture and promoted potent stimulation of longitudinal growth (p < 0.001). Importantly, the same effect was observed in ATG5 (autophagy-related 5)-deficient bones suggesting a macroautophagy-independent mechanism of MTORC1 inhibition by lysosomes. Thus, our data show that in epiphyseal chondrocytes lysosomes inhibit MTORC1 in a macroautophagy-independent manner and this inhibition likely depends on v-ATPase activity.


Asunto(s)
Autofagia/efectos de los fármacos , Condrocitos/metabolismo , Lisosomas/metabolismo , Macrólidos/farmacología , Complejos Multiproteicos/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Animales , Desarrollo Óseo/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Condrocitos/patología , Hipertrofia , Lisosomas/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Ratas , Proteína S6 Ribosómica/metabolismo , Proteínas Supresoras de Tumor/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo
20.
J Bone Miner Res ; 30(12): 2249-61, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26077727

RESUMEN

Longitudinal bone growth takes place in epiphyseal growth plates located in the ends of long bones. The growth plate consists of chondrocytes traversing from the undifferentiated (resting zone) to the terminally differentiated (hypertrophic zone) stage. Autophagy is an intracellular catabolic process of lysosome-dependent recycling of intracellular organelles and protein complexes. Autophagy is activated during nutritionally depleted or hypoxic conditions in order to facilitate cell survival. Chondrocytes in the middle of the growth plate are hypoxic and nutritionally depleted owing to the avascular nature of the growth plate. Accordingly, autophagy may facilitate their survival. To explore the role of autophagy in chondrocyte survival and constitutional bone growth, we generated mice with cartilage-specific ablation of either Atg5 (Atg5cKO) or Atg7 (Atg7cKO) by crossing Atg5 or Atg7 floxed mice with cartilage-specific collagen type 2 promoter-driven Cre. Both Atg5cKO and Atg7cKO mice showed growth retardation associated with enhanced chondrocyte cell death and decreased cell proliferation. Similarly, inhibition of autophagy by Bafilomycin A1 (Baf) or 3-methyladenine (3MA) promoted cell death in cultured slices of human growth plate tissue. To delineate the underlying mechanisms we employed ex vivo cultures of mouse metatarsal bones and RCJ3.IC5.18 rat chondrogenic cell line. Baf or 3MA impaired metatarsal bone growth associated with processing of caspase-3 and massive cell death. Similarly, treatment of RCJ3.IC5.18 chondrogenic cells by Baf also showed massive cell death and caspase-3 cleavage. This was associated with activation of caspase-9 and cytochrome C release. Altogether, our data suggest that autophagy is important for chondrocyte survival, and inhibition of this process leads to stunted growth and caspase-dependent death of chondrocytes.


Asunto(s)
Caspasas/metabolismo , Condrocitos/citología , Eliminación de Gen , Proteínas Asociadas a Microtúbulos/genética , Adenina/análogos & derivados , Adenina/metabolismo , Animales , Apoptosis , Autofagia , Proteína 5 Relacionada con la Autofagia , Proteína 7 Relacionada con la Autofagia , Muerte Celular , Línea Celular , Proliferación Celular , Supervivencia Celular , Colágeno Tipo II/metabolismo , Citocromos c/metabolismo , Placa de Crecimiento/crecimiento & desarrollo , Humanos , Hipoxia , Inmunohistoquímica , Hibridación in Situ , Macrólidos/metabolismo , Huesos Metatarsianos/metabolismo , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas/genética , Ratas , Enzimas Activadoras de Ubiquitina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA