Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Hum Genet ; 106(2): 256-263, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32004446

RESUMEN

We report an inborn error of metabolism caused by TKFC deficiency in two unrelated families. Rapid trio genome sequencing in family 1 and exome sequencing in family 2 excluded known genetic etiologies, and further variant analysis identified rare homozygous variants in TKFC. TKFC encodes a bifunctional enzyme involved in fructose metabolism through its glyceraldehyde kinase activity and in the generation of riboflavin cyclic 4',5'-phosphate (cyclic FMN) through an FMN lyase domain. The TKFC homozygous variants reported here are located within the FMN lyase domain. Functional assays in yeast support the deleterious effect of these variants on protein function. Shared phenotypes between affected individuals with TKFC deficiency include cataracts and developmental delay, associated with cerebellar hypoplasia in one case. Further complications observed in two affected individuals included liver dysfunction and microcytic anemia, while one had fatal cardiomyopathy with lactic acidosis following a febrile illness. We postulate that deficiency of TKFC causes disruption of endogenous fructose metabolism leading to generation of by-products that can cause cataract. In line with this, an affected individual had mildly elevated urinary galactitol, which has been linked to cataract development in the galactosemias. Further, in light of a previously reported role of TKFC in regulating innate antiviral immunity through suppression of MDA5, we speculate that deficiency of TKFC leads to impaired innate immunity in response to viral illness, which may explain the fatal illness observed in the most severely affected individual.


Asunto(s)
Catarata/etiología , Cerebelo/anomalías , Discapacidades del Desarrollo/etiología , Mutación , Malformaciones del Sistema Nervioso/etiología , Liasas de Fósforo-Oxígeno/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Alelos , Secuencia de Aminoácidos , Catarata/patología , Cerebelo/patología , Preescolar , Discapacidades del Desarrollo/patología , Femenino , Homocigoto , Humanos , Lactante , Masculino , Malformaciones del Sistema Nervioso/patología , Linaje , Fenotipo , Fosforilación , Homología de Secuencia , Secuenciación del Exoma
2.
Horm Res Paediatr ; 92(1): 64-70, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30879005

RESUMEN

Initially described as an uncommon presenting feature of Sotos syndrome (SoS), over the last decades, congenital hyperinsulinaemic hypoglycaemia (CHI) has been increasingly reported in association with this condition. The mechanism responsible for CHI in SoS is unclear. We report the case of a neonate presenting with CHI and extensive venous and arterial thrombosis associated with kidney, heart, liver, skeleton, and brain abnormalities and finally diagnosed with SoS on whole genome sequencing. Our case describes an extended phenotype associated with SoS presenting with CHI (including thrombosis and liver dysfunction) and reinforces the association of transient CHI with SoS. The case also shows that an early neonatal diagnosis of rare genetic conditions is challenging, especially in acutely unwell patients, and that in complex cases with incomplete, atypical, or overlapping phenotypes, broad genomic testing by whole exome or whole genome sequencing may be a useful diagnostic strategy.


Asunto(s)
Hiperinsulinismo , Hipoglucemia , Enfermedades del Recién Nacido , Síndrome de Sotos , Trombosis , Humanos , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patología , Hipoglucemia/metabolismo , Hipoglucemia/patología , Recién Nacido , Enfermedades del Recién Nacido/genética , Enfermedades del Recién Nacido/metabolismo , Enfermedades del Recién Nacido/patología , Masculino , Síndrome de Sotos/genética , Síndrome de Sotos/metabolismo , Síndrome de Sotos/patología , Trombosis/genética , Trombosis/metabolismo , Trombosis/patología , Secuenciación Completa del Genoma
3.
J Med Genet ; 55(11): 721-728, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30049826

RESUMEN

BACKGROUND: Rare genetic conditions are frequent risk factors for, or direct causes of, paediatric intensive care unit (PICU) admission. Such conditions are frequently suspected but unidentified at PICU admission. Compassionate and effective care is greatly assisted by definitive diagnostic information. There is therefore a need to provide a rapid genetic diagnosis to inform clinical management.To date, whole genome sequencing (WGS) approaches have proved successful in diagnosing a proportion of children with rare diseases, but results may take months to report. Our aim was to develop an end-to-end workflow for the use of rapid WGS for diagnosis in critically ill children in a UK National Health Service (NHS) diagnostic setting. METHODS: We sought to establish a multidisciplinary Rapid Paediatric Sequencing team for case selection, trio WGS, rapid bioinformatics sequence analysis and a phased analysis and reporting system to prioritise genes with a high likelihood of being causal. RESULTS: Trio WGS in 24 critically ill children led to a molecular diagnosis in 10 (42%) through the identification of causative genetic variants. In 3 of these 10 individuals (30%), the diagnostic result had an immediate impact on the individual's clinical management. For the last 14 trios, the shortest time taken to reach a provisional diagnosis was 4 days (median 8.5 days). CONCLUSION: Rapid WGS can be used to diagnose and inform management of critically ill children within the constraints of an NHS clinical diagnostic setting. We provide a robust workflow that will inform and facilitate the rollout of rapid genome sequencing in the NHS and other healthcare systems globally.


Asunto(s)
Enfermedad Crítica , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Secuenciación Completa del Genoma , Niño , Manejo de la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Estudio de Asociación del Genoma Completo/normas , Humanos , Unidades de Cuidado Intensivo Pediátrico , Enfermedades Raras , Secuenciación Completa del Genoma/métodos , Flujo de Trabajo
4.
PLoS Biol ; 15(11): e2002429, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29108019

RESUMEN

Biological systems are subject to inherent stochasticity. Nevertheless, development is remarkably robust, ensuring the consistency of key phenotypic traits such as correct cell numbers in a certain tissue. It is currently unclear which genes modulate phenotypic variability, what their relationship is to core components of developmental gene networks, and what is the developmental basis of variable phenotypes. Here, we start addressing these questions using the robust number of Caenorhabditis elegans epidermal stem cells, known as seam cells, as a readout. We employ genetics, cell lineage tracing, and single molecule imaging to show that mutations in lin-22, a Hes-related basic helix-loop-helix (bHLH) transcription factor, increase seam cell number variability. We show that the increase in phenotypic variability is due to stochastic conversion of normally symmetric cell divisions to asymmetric and vice versa during development, which affect the terminal seam cell number in opposing directions. We demonstrate that LIN-22 acts within the epidermal gene network to antagonise the Wnt signalling pathway. However, lin-22 mutants exhibit cell-to-cell variability in Wnt pathway activation, which correlates with and may drive phenotypic variability. Our study demonstrates the feasibility to study phenotypic trait variance in tractable model organisms using unbiased mutagenesis screens.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , División Celular , Linaje de la Célula , Proteínas de Unión al ADN/metabolismo , Células Epidérmicas , Células Madre/citología , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Recuento de Células , Diferenciación Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Epidermis/metabolismo , Regulación de la Expresión Génica , Células Madre/metabolismo , Procesos Estocásticos , Factores de Transcripción/genética , Vía de Señalización Wnt
5.
Ann Bot ; 117(5): 699-707, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26292993

RESUMEN

BACKGROUND: Living organisms are continuously confronted with perturbations, such as environmental changes that include fluctuations in temperature and nutrient availability, or genetic changes such as mutations. While some developmental systems are affected by such challenges and display variation in phenotypic traits, others continue consistently to produce invariable phenotypes despite perturbation. This ability of a living system to maintain an invariable phenotype in the face of perturbations is termed developmental robustness. Biological robustness is a phenomenon observed across phyla, and studying its mechanisms is central to deciphering the genotype-phenotype relationship. Recent work in yeast, animals and plants has shown that robustness is genetically controlled and has started to reveal the underlying mechinisms behind it. SCOPE AND CONCLUSIONS: Studying biological robustness involves focusing on an important property of developmental traits, which is the phenotypic distribution within a population. This is often neglected because the vast majority of developmental biology studies instead focus on population aggregates, such as trait averages. By drawing on findings in animals and yeast, this Viewpoint considers how studies on plant developmental robustness may benefit from strict definitions of what is the developmental system of choice and what is the relevant perturbation, and also from clear distinctions between gene effects on the trait mean and the trait variance. Recent advances in quantitative developmental biology and high-throughput phenotyping now allow the design of targeted genetic screens to identify genes that amplify or restrict developmental trait variance and to study how variation propagates across different phenotypic levels in biological systems. The molecular characterization of more quantitative trait loci affecting trait variance will provide further insights into the evolution of genes modulating developmental robustness. The study of robustness mechanisms in closely related species will address whether mechanisms of robustness are evolutionarily conserved.


Asunto(s)
Biología Evolutiva/métodos , Desarrollo de la Planta/genética , Sitios de Carácter Cuantitativo , Animales , Biodiversidad , Evolución Biológica , Femenino , Variación Genética , Nematodos/genética , Nematodos/crecimiento & desarrollo , Fenotipo , Plantas/genética , Vulva/crecimiento & desarrollo , Levaduras/genética , Levaduras/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA