Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Life Sci Alliance ; 7(12)2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39389782

RESUMEN

The human CTLH/GID (hGID) complex emerged as an important E3 ligase regulating multiple cellular processes, including cell cycle progression and metabolism. However, the range of biological functions controlled by hGID remains unexplored. Here, we used proximity-dependent biotinylation (BioID2) to identify proteins interacting with the hGID complex, among them, substrate candidates that bind GID4 in a pocket-dependent manner. Biochemical and cellular assays revealed that the hGIDGID4 E3 ligase binds and ubiquitinates ARHGAP11A, thereby targeting this RhoGAP for proteasomal degradation. Indeed, GID4 depletion or impeding the GID4 substrate binding pocket with the PFI-7 inhibitor stabilizes ARHGAP11A protein amounts, although it carries no functional N-terminal degron. Interestingly, GID4 inactivation impairs cell motility and directed cell movement by increasing ARHGAP11A levels at the cell periphery, where it inactivates RhoA. Together, we identified a wide range of hGIDGID4 E3 ligase substrates and uncovered a unique function of the hGIDGID4 E3 ligase regulating cell migration by targeting ARHGAP11A.


Asunto(s)
Movimiento Celular , Proteínas Activadoras de GTPasa , Ubiquitina-Proteína Ligasas , Ubiquitinación , Humanos , Proteínas Activadoras de GTPasa/metabolismo , Células HEK293 , Unión Proteica , Proteolisis , Proteína de Unión al GTP rhoA/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
Diabetes ; 73(10): 1648-1661, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39046834

RESUMEN

Growth arrest-specific 6 (GAS6) is a secreted protein that acts as a ligand for TAM receptors (TYRO3, AXL, and MERTK). In humans, GAS6 circulating levels and genetic variations in GAS6 are associated with hyperglycemia and increased risk of type 2 diabetes. However, the mechanisms by which GAS6 influences glucose metabolism are not understood. Here, we show that Gas6 deficiency in mice increases insulin sensitivity and protects from diet-induced insulin resistance. Conversely, increasing GAS6 circulating levels is sufficient to reduce insulin sensitivity in vivo. GAS6 inhibits the activation of the insulin receptor (IR) and reduces insulin response in muscle cells in vitro and in vivo. Mechanistically, AXL and IR form a complex, while GAS6 reprograms signaling pathways downstream of IR. This results in increased IR endocytosis following insulin treatment. This study contributes to a better understanding of the cellular and molecular mechanisms by which GAS6 and AXL influence insulin sensitivity.


Asunto(s)
Tirosina Quinasa del Receptor Axl , Endosomas , Resistencia a la Insulina , Insulina , Péptidos y Proteínas de Señalización Intercelular , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras , Receptor de Insulina , Transducción de Señal , Animales , Receptor de Insulina/metabolismo , Receptor de Insulina/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Resistencia a la Insulina/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Ratones , Transducción de Señal/fisiología , Insulina/metabolismo , Endosomas/metabolismo , Ratones Noqueados , Masculino , Humanos , Ratones Endogámicos C57BL , Transporte de Proteínas
3.
Proc Natl Acad Sci U S A ; 121(17): e2312330121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625936

RESUMEN

The apolipoprotein B messenger RNA editing enzyme, catalytic polypeptide (APOBEC) family is composed of nucleic acid editors with roles ranging from antibody diversification to RNA editing. APOBEC2, a member of this family with an evolutionarily conserved nucleic acid-binding cytidine deaminase domain, has neither an established substrate nor function. Using a cellular model of muscle differentiation where APOBEC2 is inducibly expressed, we confirmed that APOBEC2 does not have the attributed molecular functions of the APOBEC family, such as RNA editing, DNA demethylation, and DNA mutation. Instead, we found that during muscle differentiation APOBEC2 occupied a specific motif within promoter regions; its removal from those regions resulted in transcriptional changes. Mechanistically, these changes reflect the direct interaction of APOBEC2 with histone deacetylase (HDAC) transcriptional corepressor complexes. We also found that APOBEC2 could bind DNA directly, in a sequence-specific fashion, suggesting that it functions as a recruiter of HDAC to specific genes whose promoters it occupies. These genes are normally suppressed during muscle cell differentiation, and their suppression may contribute to the safeguarding of muscle cell fate. Altogether, our results reveal a unique role for APOBEC2 within the APOBEC family.


Asunto(s)
Cromatina , Proteínas Musculares , Desaminasas APOBEC/genética , Desaminasas APOBEC-1/genética , Diferenciación Celular/genética , Cromatina/genética , Citidina Desaminasa/metabolismo , ADN , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Mioblastos/metabolismo , ARN Mensajero/genética , Animales , Ratones
4.
J Cell Sci ; 137(9)2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38606629

RESUMEN

The ADP-ribosylation factors (ARFs) and ARF-like (ARL) GTPases serve as essential molecular switches governing a wide array of cellular processes. In this study, we used proximity-dependent biotin identification (BioID) to comprehensively map the interactome of 28 out of 29 ARF and ARL proteins in two cellular models. Through this approach, we identified ∼3000 high-confidence proximal interactors, enabling us to assign subcellular localizations to the family members. Notably, we uncovered previously undefined localizations for ARL4D and ARL10. Clustering analyses further exposed the distinctiveness of the interactors identified with these two GTPases. We also reveal that the expression of the understudied member ARL14 is confined to the stomach and intestines. We identified phospholipase D1 (PLD1) and the ESCPE-1 complex, more precisely, SNX1, as proximity interactors. Functional assays demonstrated that ARL14 can activate PLD1 in cellulo and is involved in cargo trafficking via the ESCPE-1 complex. Overall, the BioID data generated in this study provide a valuable resource for dissecting the complexities of ARF and ARL spatial organization and signaling.


Asunto(s)
Factores de Ribosilacion-ADP , Fosfolipasa D , Transducción de Señal , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética , Humanos , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , Células HEK293 , Animales , Nexinas de Clasificación/metabolismo , Nexinas de Clasificación/genética , Mapeo de Interacción de Proteínas
5.
Mol Cell Biol ; 44(1): 1-16, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38270191

RESUMEN

The ubiquitin proteasome system performs the covalent attachment of lysine 48-linked polyubiquitin chains to substrate proteins, thereby targeting them for degradation, while deubiquitylating enzymes (DUBs) reverse this process. This posttranslational modification regulates key features both of innate and adaptative immunity, including antigen presentation, protein homeostasis and signal transduction. Here we show that loss of one of the most highly expressed DUBs, Otub1, results in changes in murine splenic B cell subsets, leading to a significant increase in marginal zone and transitional B cells and a concomitant decrease in follicular B cells. We demonstrate that Otub1 interacts with the γ-subunit of the heterotrimeric G protein, Gng2, and modulates its ubiquitylation status, thereby controlling Gng2 stability. Proximal mapping of Gng2 revealed an enrichment in partners associated with chemokine signaling, actin cytoskeleton and cell migration. In line with these findings, we show that Otub1-deficient B cells exhibit greater Ca2+ mobilization, F-actin polymerization and chemotactic responsiveness to Cxcl12, Cxcl13 and S1P in vitro, which manifests in vivo as altered localization of B cells within the spleen. Together, our data establishes Otub1 as a novel regulator of G-protein coupled receptor signaling in B cells, regulating their differentiation and positioning in the spleen.


Asunto(s)
Quimiotaxis de Leucocito , Enzimas Desubicuitinizantes , Bazo , Ubiquitina , Animales , Ratones , Enzimas Desubicuitinizantes/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal , Bazo/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Cisteína Endopeptidasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Linfocitos B/metabolismo , Quimiotaxis de Leucocito/genética
6.
bioRxiv ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36909472

RESUMEN

The ADP-ribosylation factors (ARFs) and ARF-like (ARLs) GTPases serve as essential molecular switches governing a wide array of cellular processes. In this study, we utilized proximity-dependent biotin identification (BioID) to comprehensively map the interactome of 28 out of 29 ARF and ARL proteins in two cellular models. Through this approach, we identified ~3000 high-confidence proximal interactors, enabling us to assign subcellular localizations to the family members. Notably, we uncovered previously undefined localizations for ARL4D and ARL10. Clustering analyses further exposed the distinctiveness of the interactors identified with these two GTPases. We also reveal that the expression of the understudied member ARL14 is confined to the stomach and intestines. We identified phospholipase D1 (PLD1) and the ESCPE-1 complex, more precisely SNX1, as proximity interactors. Functional assays demonstrated that ARL14 can activate PLD1 in cellulo and is involved in cargo trafficking via the ESCPE-1 complex. Overall, the BioID data generated in this study provide a valuable resource for dissecting the complexities of ARF and ARL spatial organization and signaling.

7.
J Biol Chem ; 299(9): 105123, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37536630

RESUMEN

Distinct functions mediated by members of the monopolar spindle-one-binder (MOB) family of proteins remain elusive beyond the evolutionarily conserved and well-established roles of MOB1 (MOB1A/B) in regulating tissue homeostasis within the Hippo pathway. Since MOB proteins are adaptors, understanding how they engage in protein-protein interactions and help assemble complexes is essential to define the full scope of their biological functions. To address this, we undertook a proximity-dependent biotin identification approach to define the interactomes of all seven human MOB proteins in HeLa and human embryonic kidney 293 cell lines. We uncovered >200 interactions, of which at least 70% are unreported on BioGrid. The generated dataset reliably recalled the bona fide interactors of the well-studied MOBs. We further defined the common and differential interactome between different MOBs on a subfamily and an individual level. We discovered a unique association between MOB3C and 7 of 10 protein subunits of the RNase P complex, an endonuclease that catalyzes tRNA 5' maturation. As a proof of principle for the robustness of the generated dataset, we validated the specific interaction of MOB3C with catalytically active RNase P by using affinity purification-mass spectrometry and pre-tRNA cleavage assays of MOB3C pulldowns. In summary, our data provide novel insights into the biology of MOB proteins and reveal the first interactors of MOB3C, components of the RNase P complex, and hence an exciting nexus with RNA biology.


Asunto(s)
Vía de Señalización Hippo , Mapeo de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas , Ribonucleasa P , Humanos , Células HeLa , Vía de Señalización Hippo/fisiología , Ribonucleasa P/metabolismo , Células HEK293 , Subunidades de Proteína/metabolismo
8.
Sci Adv ; 9(32): eadf4082, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556550

RESUMEN

Interstrand DNA cross-links (ICLs) represent complex lesions that compromise genomic stability. Several pathways have been involved in ICL repair, but the extent of factors involved in the resolution of ICL-induced DNA double-strand breaks (DSBs) remains poorly defined. Using CRISPR-based genomics, we identified FIGNL1 interacting regulator of recombination and mitosis (FIRRM) as a sensitizer of the ICL-inducing agent mafosfamide. Mechanistically, we showed that FIRRM, like its interactor Fidgetin like 1 (FIGNL1), contributes to the resolution of RAD51 foci at ICL-induced DSBs. While the stability of FIGNL1 and FIRRM is interdependent, expression of a mutant of FIRRM (∆WCF), which stabilizes the protein in the absence of FIGNL1, allows the resolution of RAD51 foci and cell survival, suggesting that FIRRM has FIGNL1-independent function during DNA repair. In line with this model, FIRRM binds preferentially single-stranded DNA in vitro, raising the possibility that it directly contributes to RAD51 disassembly by interacting with DNA. Together, our findings establish FIRRM as a promoting factor of ICL repair.


Asunto(s)
Reparación del ADN , Recombinasa Rad51 , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteínas/genética , ADN/genética , Mitosis
9.
Nucleic Acids Res ; 51(D1): D1549-D1557, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36321651

RESUMEN

RNA binding proteins (RBPs) are central regulators of gene expression implicated in all facets of RNA metabolism. As such, they play key roles in cellular physiology and disease etiology. Since different steps of post-transcriptional gene expression tend to occur in specific regions of the cell, including nuclear or cytoplasmic locations, defining the subcellular distribution properties of RBPs is an important step in assessing their potential functions. Here, we present the RBP Image Database, a resource that details the subcellular localization features of 301 RBPs in the human HepG2 and HeLa cell lines, based on the results of systematic immuno-fluorescence studies conducted using a highly validated collection of RBP antibodies and a panel of 12 markers for specific organelles and subcellular structures. The unique features of the RBP Image Database include: (i) hosting of comprehensive representative images for each RBP-marker pair, with ∼250,000 microscopy images; (ii) a manually curated controlled vocabulary of annotation terms detailing the localization features of each factor; and (iii) a user-friendly interface allowing the rapid querying of the data by target or annotation. The RBP Image Database is freely available at https://rnabiology.ircm.qc.ca/RBPImage/.


Asunto(s)
Bases de Datos Factuales , Imagen Óptica , Proteínas de Unión al ARN , Humanos , Anticuerpos/metabolismo , Células HeLa , ARN/química , Proteínas de Unión al ARN/metabolismo , Células Hep G2
10.
PLoS Genet ; 18(11): e1010495, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36374936

RESUMEN

Homologous recombination (HR) plays an essential role in the maintenance of genome stability by promoting the repair of cytotoxic DNA double strand breaks (DSBs). More recently, the HR pathway has emerged as a core component of the response to replication stress, in part by protecting stalled replication forks from nucleolytic degradation. In that regard, the mammalian RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) have been involved in both HR-mediated DNA repair and collapsed replication fork resolution. Still, it remains largely obscure how they participate in both processes, thereby maintaining genome stability and preventing cancer development. To gain better insight into their contribution in cellulo, we mapped the proximal interactome of the classical RAD51 paralogs using the BioID approach. Aside from identifying the well-established BCDX2 and CX3 sub-complexes, the spliceosome machinery emerged as an integral component of our proximal mapping, suggesting a crosstalk between this pathway and the RAD51 paralogs. Furthermore, we noticed that factors involved RNA metabolic pathways are significantly modulated within the BioID of the classical RAD51 paralogs upon exposure to hydroxyurea (HU), pointing towards a direct contribution of RNA processing during replication stress. Importantly, several members of these pathways have prognostic potential in breast cancer (BC), where their RNA expression correlates with poorer patient outcome. Collectively, this study uncovers novel functionally relevant partners of the different RAD51 paralogs in the maintenance of genome stability that could be used as biomarkers for the prognosis of BC.


Asunto(s)
Inestabilidad Genómica , Recombinasa Rad51 , Animales , Humanos , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Inestabilidad Genómica/genética , Recombinación Homóloga/genética , Roturas del ADN de Doble Cadena , ARN , Reparación del ADN/genética , Mamíferos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
11.
STAR Protoc ; 3(1): 101075, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35036956

RESUMEN

Proximity-dependent biotinylation (BioID) screens are excellent tools to capture in cellulo interactomes for a large variety of baits, including transient and weak affinity interactions, as well as localization-specific proximity components, which are much harder to detect with conventional approaches. Here, we describe the major starting steps and a detailed protocol on how to perform BioID in mammalian cells. We also describe the mass spectrometry procedure and the bioinformatics pipeline for the data analysis. For complete details on the use and execution of this profile, please refer to Bagci et al. (2020).


Asunto(s)
Mapeo de Interacción de Proteínas , Proteínas , Animales , Biotinilación , Biología Computacional , Mamíferos/metabolismo , Espectrometría de Masas/métodos , Mapeo de Interacción de Proteínas/métodos , Proteínas/metabolismo
12.
Cell Mol Life Sci ; 78(13): 5427-5445, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34089346

RESUMEN

Cyclin M (CNNM1-4) proteins maintain cellular and body magnesium (Mg2+) homeostasis. Using various biochemical approaches, we have identified members of the CNNM family as direct interacting partners of ADP-ribosylation factor-like GTPase 15 (ARL15), a small GTP-binding protein. ARL15 interacts with CNNMs at their carboxyl-terminal conserved cystathionine-ß-synthase (CBS) domains. In silico modeling of the interaction between CNNM2 and ARL15 supports that the small GTPase specifically binds the CBS1 and CNBH domains. Immunocytochemical experiments demonstrate that CNNM2 and ARL15 co-localize in the kidney, with both proteins showing subcellular localization in the endoplasmic reticulum, Golgi apparatus and the plasma membrane. Most importantly, we found that ARL15 is required for forming complex N-glycosylation of CNNMs. Overexpression of ARL15 promotes complex N-glycosylation of CNNM3. Mg2+ uptake experiments with a stable isotope demonstrate that there is a significant increase of 25Mg2+ uptake upon knockdown of ARL15 in multiple kidney cancer cell lines. Altogether, our results establish ARL15 as a novel negative regulator of Mg2+ transport by promoting the complex N-glycosylation of CNNMs.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Ciclinas/metabolismo , Homeostasis , Magnesio/metabolismo , Factores de Ribosilacion-ADP/genética , Transporte Biológico , Ciclinas/genética , Glicosilación , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica
13.
J Virol ; 95(15): e0097120, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34011540

RESUMEN

HIV-1 encodes several accessory proteins-Nef, Vif, Vpr, and Vpu-whose functions are to modulate the cellular environment to favor immune evasion and viral replication. While Vpr was shown to mediate a G2/M cell cycle arrest and provide a replicative advantage during infection of myeloid cells, the mechanisms underlying these functions remain unclear. In this study, we defined HIV-1 Vpr proximity interaction network using the BioID proximity labeling approach and identified 352 potential Vpr partners/targets, including several complexes, such as the cell cycle-regulatory anaphase-promoting complex/cyclosome (APC/C). Herein, we demonstrate that both the wild type and cell cycle-defective mutants of Vpr induce the degradation of APC1, an essential APC/C scaffolding protein, and show that this activity relies on the recruitment of DCAF1 by Vpr and the presence of a functional proteasome. Vpr forms a complex with APC1, and the APC/C coactivators Cdh1 and Cdc20 are associated with these complexes. Interestingly, we found that Vpr encoded by the prototypic HIV-1 NL4.3 does not interact efficiently with APC1 and is unable to mediate its degradation as a result of a N28S-G41N amino acid substitution. In contrast, we show that APC1 degradation is a conserved feature of several primary Vpr variants from transmitted/founder virus. Functionally, Vpr-mediated APC1 degradation did not impact the ability of the protein to induce a G2 cell cycle arrest during infection of CD4+ T cells or enhance HIV-1 replication in macrophages, suggesting that this conserved activity may be important for other aspects of HIV-1 pathogenesis. IMPORTANCE The function of the Vpr accessory protein during HIV-1 infection remains poorly defined. Several cellular targets of Vpr were previously identified, but their individual degradation does not fully explain the ability of Vpr to impair the cell cycle or promote HIV-1 replication in macrophages. Here, we used the unbiased proximity labeling approach, called BioID, to further define the Vpr proximity interaction network and identified several potentially new Vpr partners/targets. We validated our approach by focusing on a cell cycle master regulator, the APC/C complex, and demonstrated that Vpr mediated the degradation of a critical scaffolding component of APC/C called APC1. Furthermore, we showed that targeting of APC/C by Vpr did not impact the known activity of Vpr. Since degradation of APC1 is a conserved feature of several primary variants of Vpr, it is likely that the interplay between Vpr and APC/C governs other aspects of HIV-1 pathogenesis.


Asunto(s)
Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Infecciones por VIH/patología , VIH-1/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/genética , Ubiquitina-Proteína Ligasas/genética , Replicación Viral/genética , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo , Linfocitos T CD4-Positivos/virología , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Células HEK293 , VIH-1/metabolismo , Células HeLa , Humanos , Macrófagos/virología , Interferencia de ARN , ARN Interferente Pequeño/genética , Espectrometría de Masas en Tándem , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/genética
14.
Nat Commun ; 11(1): 3586, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32681075

RESUMEN

Aberrant expression of receptor tyrosine kinase AXL is linked to metastasis. AXL can be activated by its ligand GAS6 or by other kinases, but the signaling pathways conferring its metastatic activity are unknown. Here, we define the AXL-regulated phosphoproteome in breast cancer cells. We reveal that AXL stimulates the phosphorylation of a network of focal adhesion (FA) proteins, culminating in faster FA disassembly. Mechanistically, AXL phosphorylates NEDD9, leading to its binding to CRKII which in turn associates with and orchestrates the phosphorylation of the pseudo-kinase PEAK1. We find that PEAK1 is in complex with the tyrosine kinase CSK to mediate the phosphorylation of PAXILLIN. Uncoupling of PEAK1 from AXL signaling decreases metastasis in vivo, but not tumor growth. Our results uncover a contribution of AXL signaling to FA dynamics, reveal a long sought-after mechanism underlying AXL metastatic activity, and identify PEAK1 as a therapeutic target in AXL positive tumors.


Asunto(s)
Movimiento Celular , Adhesiones Focales/metabolismo , Neoplasias/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular Tumoral , Adhesiones Focales/genética , Humanos , Invasividad Neoplásica , Neoplasias/genética , Neoplasias/fisiopatología , Paxillin/genética , Paxillin/metabolismo , Fosforilación , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal , Tirosina Quinasa del Receptor Axl
15.
J Mol Biol ; 432(17): 4856-4871, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32628956

RESUMEN

Polycomb Group proteins regulate gene expression by modifying chromatin. Polycomb Repressive Complex 1 (PRC1) has two activities: a ubiquitin ligase activity for histone H2A and a chromatin compacting activity. In Drosophila, the Posterior Sex Combs (PSC) subunit of PRC1 is central to both activities. The N-terminal of PSC assembles into PRC1, including partnering with dRING to form the ubiquitin ligase. The intrinsically disordered C-terminal region of PSC compacts chromatin and inhibits chromatin remodeling and transcription in vitro. Both regions of PSC are essential in vivo. To understand how these two activities may be coordinated in PRC1, we used crosslinking mass spectrometry to analyze the conformations of the C-terminal region of PSC in PRC1 and how they change on binding DNA. Crosslinking identifies interactions between the C-terminal region of PSC and the core of PRC1, including between N and C-terminal regions of PSC. New contacts and overall more compacted PSC C-terminal region conformations are induced by DNA binding. Protein footprinting of accessible lysine residues reveals an extended, bipartite candidate DNA/chromatin binding surface in the C-terminal region of PSC. Our data suggest a model in which DNA (or chromatin) follows a long path on the flexible disordered region of PSC. Intramolecular interactions of PSC detected by crosslinking can bring the high-affinity DNA/chromatin binding region close to the core of PRC1 without disrupting the interface between the ubiquitin ligase and the nucleosome. Our approach may be applicable to understanding the global organization of other large intrinsically disordered regions that bind nucleic acids.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Complejo Represivo Polycomb 1/química , Complejo Represivo Polycomb 1/metabolismo , Animales , Sitios de Unión , Cromatina/química , Cromatina/genética , Proteínas de Unión al ADN/genética , Drosophila/genética , Proteínas de Drosophila/genética , Espectrometría de Masas , Mutación , Complejo Represivo Polycomb 1/genética , Dominios Proteicos
16.
Mol Metab ; 34: 72-84, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32180561

RESUMEN

OBJECTIVE: The liver is regularly exposed to changing metabolic and inflammatory environments. It must sense and adapt to metabolic need while balancing resources required to protect itself from insult. Peroxisome proliferator activated receptor gamma coactivator-1 alpha (PGC-1α) is a transcriptional coactivator expressed as multiple, alternatively spliced variants transcribed from different promoters that coordinate metabolic adaptation and protect against inflammation. It is not known how PGC-1α integrates extracellular signals to balance metabolic and anti-inflammatory outcomes. METHODS: Primary mouse hepatocytes were used to evaluate the role(s) of different PGC-1α proteins in regulating hepatic metabolism and inflammatory signaling downstream of tumor necrosis factor alpha (TNFα). Gene expression and signaling analysis were combined with biochemical measurement of apoptosis using gain- and loss-of-function in vitro and in vivo. RESULTS: Hepatocytes expressed multiple isoforms of PGC-1α, including PGC-1α4, which microarray analysis showed had common and isoform-specific functions linked to metabolism and inflammation compared with canonical PGC-1α1. Whereas PGC-1α1 primarily impacted gene programs of nutrient metabolism and mitochondrial biology, TNFα signaling showed several pathways related to innate immunity and cell death downstream of PGC-1α4. Gain- and loss-of-function models illustrated that PGC-1α4 uniquely enhanced expression of anti-apoptotic gene programs and attenuated hepatocyte apoptosis in response to TNFα or lipopolysaccharide (LPS). This was in contrast to PGC-1α1, which decreased the expression of a wide inflammatory gene network but did not prevent hepatocyte death in response to cytokines. CONCLUSIONS: PGC-1α variants have distinct, yet complementary roles in hepatic responses to metabolism and inflammation, and we identify PGC-1α4 as an important mitigator of apoptosis.


Asunto(s)
Apoptosis , Hepatocitos/metabolismo , Inflamación/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Línea Celular , Femenino , Hepatocitos/patología , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/deficiencia , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/metabolismo
18.
Nat Cell Biol ; 22(1): 120-134, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31871319

RESUMEN

Guanine nucleotide exchange factors (RhoGEFs) and GTPase-activating proteins (RhoGAPs) coordinate the activation state of the Rho family of GTPases for binding to effectors. Here, we exploited proximity-dependent biotinylation to systematically define the Rho family proximity interaction network from 28 baits to produce 9,939 high-confidence proximity interactions in two cell lines. Exploiting the nucleotide states of Rho GTPases, we revealed the landscape of interactions with RhoGEFs and RhoGAPs. We systematically defined effectors of Rho proteins to reveal candidates for classical and atypical Rho proteins. We used optogenetics to demonstrate that KIAA0355 (termed GARRE here) is a RAC1 interactor. A functional screen of RHOG candidate effectors identified PLEKHG3 as a promoter of Rac-mediated membrane ruffling downstream of RHOG. We identified that active RHOA binds the kinase SLK in Drosophila and mammalian cells to promote Ezrin-Radixin-Moesin phosphorylation. Our proximity interactions data pave the way for dissecting additional Rho signalling pathways, and the approaches described here are applicable to the Ras family.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión al GTP rho/metabolismo , Secuencia de Aminoácidos/fisiología , Animales , Drosophila , Humanos , Unión Proteica/fisiología , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
19.
Nat Ecol Evol ; 3(8): 1253-1264, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31358949

RESUMEN

The shift from a hunter-gatherer to an agricultural mode of subsistence is believed to have been associated with profound changes in the burden and diversity of pathogens across human populations. Yet, the extent to which the advent of agriculture affected the evolution of the human immune system remains unknown. Here we present a comparative study of variation in the transcriptional responses of peripheral blood mononuclear cells to bacterial and viral stimuli between Batwa rainforest hunter-gatherers and Bakiga agriculturalists from Uganda. We observed increased divergence between hunter-gatherers and agriculturalists in the early transcriptional response to viruses compared with that for bacterial stimuli. We demonstrate that a significant fraction of these transcriptional differences are under genetic control and we show that positive natural selection has helped to shape population differences in immune regulation. Across the set of genetic variants underlying inter-population immune-response differences, however, the signatures of positive selection were disproportionately observed in the rainforest hunter-gatherers. This result is counter to expectations on the basis of the popularized notion that shifts in pathogen exposure due to the advent of agriculture imposed radically heightened selective pressures in agriculturalist populations.


Asunto(s)
Leucocitos Mononucleares , Selección Genética , Agricultura , Humanos , Bosque Lluvioso , Uganda
20.
Curr Opin Immunol ; 58: 31-37, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30904790

RESUMEN

Parkinson's disease (PD) is caused by the progressive loss of dopaminergic neurons and afflicts millions of people world-wide. The current treatments address only the late motor symptoms, with no cure or preventive therapeutic approaches. The contribution of dysfunctional immune mechanisms in PD has been clearly established, with an emphasis on neuroinflammation and microglial cell activation. Recent studies have widened the involvement of the immune system in this disease by clearly showing the engagement of adaptive immunity and antigen presentation processes, directly regulated by PD-related proteins, raising the question whether PD is an autoimmune disease. The contribution of autoimmune mechanisms in PD opens novel avenues for the development of preventive therapeutic approaches.


Asunto(s)
Presentación de Antígeno/inmunología , Autoinmunidad/inmunología , Neuronas Dopaminérgicas/inmunología , Mitocondrias/inmunología , Enfermedad de Parkinson/inmunología , Animales , Neuronas Dopaminérgicas/metabolismo , Humanos , Mitocondrias/metabolismo , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/inmunología , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA