RESUMEN
One of the open challenges of spintronics is to control the spin relaxation mechanisms. Layered metal-halide perovskites are an emerging class of semiconductors which possess a soft crystal lattice that strongly couples electronic and vibrational states and show promise for spintronic applications. Here, we investigate the impact of such strong coupling on the spin relaxation of excitons in the layered perovskite BA2FAPbI7 using a combination of cryogenic Faraday rotation and transient absorption spectroscopy. We report an unexpected increase of the spin lifetime by two orders of magnitude at 77 K under photoexcitation with photon energy in excess of the exciton absorption peak, and thus demonstrate optical control over the dominant spin relaxation mechanism. We attribute this control to strong coupling between excitons and optically excited phonons, which form polaronic states with reduced electron-hole wave function overlap that protect the exciton spin memory. Our insights highlight the special role of exciton-lattice interactions on the spin physics in the layered perovskites and provide a novel opportunity for optical spin control.
RESUMEN
Band gap tuning of hybrid metal-halide perovskites by halide substitution holds promise for tailored light absorption in tandem solar cells and emission in light-emitting diodes. However, the impact of halide substitution on the crystal structure and the fundamental mechanism of photo-induced halide segregation remain open questions. Here, using a combination of temperature-dependent X-ray diffraction and calorimetry measurements, we report the emergence of a disorder- and frustration-driven orientational glass for a wide range of compositions in CH3NH3Pb(Cl x Br1-x )3. Using temperature-dependent photoluminescence measurements, we find a correlation between halide segregation under illumination and local strains from the orientational glass. We observe no glassy behavior in CsPb(Cl x Br1-x )3, highlighting the importance of the A-site cation for the structure and optoelectronic properties. Using first-principles calculations, we identify the local preferential alignment of the organic cations as the glass formation mechanism. Our findings rationalize the superior photostability of mixed-cation metal-halide perovskites and provide guidelines for further stabilization strategies.
RESUMEN
Excitation localization involving dynamic nanoscale distortions is a central aspect of photocatalysis1, quantum materials2 and molecular optoelectronics3. Experimental characterization of such distortions requires techniques sensitive to the formation of point-defect-like local structural rearrangements in real time. Here, we visualize excitation-induced strain fields in a prototypical member of the lead halide perovskites4 via femtosecond resolution diffuse X-ray scattering measurements. This enables momentum-resolved phonon spectroscopy of the locally distorted structure and reveals radially expanding nanometre-scale strain fields associated with the formation and relaxation of polarons in photoexcited perovskites. Quantitative estimates of the magnitude and shape of this polaronic distortion are obtained, providing direct insights into the dynamic structural distortions that occur in these materials5-9. Optical pump-probe reflection spectroscopy corroborates these results and shows how these large polaronic distortions transiently modify the carrier effective mass, providing a unified picture of the coupled structural and electronic dynamics that underlie the optoelectronic functionality of the hybrid perovskites.
RESUMEN
Using circularly polarized broadband transient absorption, time-resolved circular photoluminescence, and transient Faraday rotation spectroscopy, we report that spin-dependent interactions have a significant impact on exciton energies and spin depolarization times in layered Ruddlesden-Popper hybrid metal-halide perovskites. In BA2FAPb2I7, we report that room-temperature spin lifetimes are largest (3.2 ps) at a carrier density of â¼1017 cm-3 with increasing depolarization rates at higher exciton densities. This indicates that many-body interactions reduce spin-lifetimes and outcompete the effect of D'yakonov-Perel precessional relaxation that has been previously reported at lower carrier densities. We further observe a dynamic circular dichroism that arises from a photoinduced polarization in the exciton distribution between total angular momentum states. Our findings provide fundamental and application relevant insights into the spin-dependent exciton-exciton interactions in layered hybrid perovskites.
RESUMEN
Anharmonic crystal lattice dynamics have been observed in lead halide perovskites on picosecond timescales. Here, we report that the soft nature of the perovskite crystal lattice gives rise to dynamic fluctuations in the electronic properties of excited states. We use linear polarization selective transient absorption spectroscopy to study the charge carrier relaxation dynamics in lead-halide perovskite films and nanocrystals. We find that photo-excited charge carriers maintain an initial polarization anisotropy for several picoseconds, independent of crystallite size and composition, and well beyond the reported timescales of carrier scattering. First-principles calculations find intrinsic anisotropies in the transition dipole moment, which depend on the orientation of light polarization and the polar distortion of the local crystal lattice. Lattice dynamics are imprinted in the optical transitions and anisotropies arise on the time-scales of structural motion. The strong coupling between electronic states and structural dynamics requires a unique interpretation of recombination and transport mechanisms.
RESUMEN
Optical harmonic generation occurs when high intensity light (>1010 W m-2) interacts with a nonlinear material. Electrical control of the nonlinear optical response enables applications such as gate-tunable switches and frequency converters. Graphene displays exceptionally strong light-matter interaction and electrically and broadband tunable third-order nonlinear susceptibility. Here, we show that the third-harmonic generation efficiency in graphene can be increased by almost two orders of magnitude by controlling the Fermi energy and the incident photon energy. This enhancement is due to logarithmic resonances in the imaginary part of the nonlinear conductivity arising from resonant multiphoton transitions. Thanks to the linear dispersion of the massless Dirac fermions, gate controllable third-harmonic enhancement can be achieved over an ultrabroad bandwidth, paving the way for electrically tunable broadband frequency converters for applications in optical communications and signal processing.