RESUMEN
Background: Surveillance of SARS-CoV-2 circulation is mainly based on real-time reverse transcription-polymerase chain reaction, which requires laboratory facilities and cold chain for sample transportation. This is difficult to achieve in remote rural areas of resource-limited settings. The use of dried blood spots shipped at room temperature has shown good efficiency for the detection of arboviral RNA. Using a similar approach, we conducted a study at 3 provincial hospitals in Laos to compare the detection of SARS-CoV-2 from neat and dried spot samples. Methods: Between January 2022 and March 2023, patients with respiratory symptoms were recruited. Nasopharyngeal/oropharyngeal swabs in virus transport medium (VTM), dry swabs, saliva, and dried saliva spotted on filter paper were collected. All samples were tested by SARS-CoV-2 real-time reverse transcription-polymerase chain reaction. Results: In total, 479 participants were included. The VTM samples tested positive for 288 (60.1%). High positive percent agreements were observed for dry swab (84.8%; 95% CI, 80.2%-88.8%) and saliva (89.2%; 95% CI, 85.1%-92.6%) as compared with VTM. There was a loss of sensitivity when saliva was dried on filter paper (73.6%; 95% CI, 68.1%-78.6%) as compared with saliva. SARS-CoV-2 variant (Delta or Omicron) had no significant impact on the performance of the different sample types. Conclusions: Our findings suggest that dry swabs could be a good alternative for sample collection and permit easy shipping at ambient temperature for subsequent viral SARS-CoV-2 RNA purification and molecular investigation. This is a useful tool to consider for a rapid implementation of large-scale surveillance of SARS-CoV-2 in remote areas, which could be extrapolated to other respiratory targets during routine surveillance or in the case of a novel emerging pandemic.
RESUMEN
BACKGROUND: Fever is the most frequent symptom in patients seeking care in South and Southeast Asia. The introduction of rapid diagnostic tests (RDTs) for malaria continues to drive patient management and care. Malaria-negative cases are commonly treated with antibiotics without confirmation of bacteraemia. Conventional laboratory tests for differential diagnosis require skilled staff and appropriate access to healthcare facilities. In addition, introducing single-disease RDTs instead of conventional laboratory tests remains costly. To overcome some of the delivery challenges of multiple separate tests, a multiplexed RDT with the capacity to diagnose a diverse range of tropical fevers would be a cost-effective solution. In this study, a multiplex lateral flow immunoassay (DPP Fever Panel II Assay) that can detect serum immunoglobulin M (IgM) and specific microbial antigens of common fever agents in Asia (Orientia tsutsugamushi, Rickettsia typhi, Leptospira spp., Burkholderia pseudomallei, Dengue virus, Chikungunya virus, and Zika virus), was evaluated. METHODOLOGY/PRINCIPAL FINDINGS: Whole blood (WB) and serum samples from 300 patients with undefined febrile illness (UFI) recruited in Vientiane, Laos PDR were tested using the DPP Fever Panel II, which consists of an Antibody panel and Antigen panel. To compare reader performance, results were recorded using two DPP readers, DPP Micro Reader (Micro Reader 1) and DPP Micro Reader Next Generation (Micro Reader 2). WB and serum samples were run on the same fever panel and read on both micro readers in order to compare results. ROC analysis and equal variance analysis were performed to inform the diagnostic validity of the test compared against the respective reference standards of each fever agent (S1 Table). Overall better AUC values were observed in whole blood results. No significant difference in AUC performance was observed when comparing whole blood and serum sample testing, except for when testing for R. typhi IgM (p = 0.04), Leptospira IgM (p = 0.02), and Dengue IgG (p = 0.03). Linear regression depicted R2 values had ~70% agreement across WB and serum samples, except when testing for leptospirosis and Zika, where the R2 values were 0.37 and 0.47, respectively. No significant difference was observed between the performance of Micro Reader 1 and Micro Reader 2, except when testing for the following pathogens: Zika IgM, Zika IgG, and B pseudomallei CPS Ag. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that the diagnostic accuracy of the DPP Fever Panel II is comparable to that of commonly used RDTs. The optimal cut-off would depend on the use of the test and the desired sensitivity and specificity. Further studies are required to authenticate the use of these cut-offs in other endemic regions. This multiplex RDT offers diagnostic benefits in areas with limited access to healthcare and has the potential to improve field testing capacities. This could improve tropical fever management and reduce the public health burden in endemic low-resource areas.
Asunto(s)
Inmunoglobulina M , Sensibilidad y Especificidad , Humanos , Inmunoglobulina M/sangre , Femenino , Masculino , Laos , Adulto , Fiebre/diagnóstico , Anticuerpos Antibacterianos/sangre , Pruebas Diagnósticas de Rutina/métodos , Persona de Mediana Edad , Adolescente , Adulto Joven , Anticuerpos Antivirales/sangre , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/análisis , Inmunoensayo/métodos , Inmunoensayo/normasRESUMEN
Burkholderia pseudomallei is the causative agent of melioidosis, a life-threatening disease common in Southeast Asia and northern Australia. Melioidosis often presents with nonspecific symptoms and has a fatality rate of upwards of 70% when left untreated. The gold standard for diagnosis is culturing B. pseudomallei from patient samples. Bacterial culture, however, can take up to 7 days, and its sensitivity is poor, at roughly 60%. The successful administration of appropriate antibiotics is reliant on rapid and accurate diagnosis. Hence, there is a genuine need for new diagnostics for this deadly pathogen. The Active Melioidosis Detect (AMD) lateral flow immunoassay (LFI) detects the capsular polysaccharide (CPS) of B. pseudomallei. The assay is designed for use on various clinical samples, including serum and urine; however, there are limited data to support which clinical matrices are the best candidates for detecting CPS. In this study, concentrations of CPS in paired serum and urine samples from melioidosis patients were determined using a quantitative antigen capture enzyme-linked immunosorbent assay. In parallel, samples were tested with the AMD LFI, and the results of the two immunoassays were compared. Additionally, centrifugal concentration was performed on a subset of urine samples to determine if this method may improve detection when CPS levels are initially low or undetectable. The results indicate that while CPS levels varied within the two matrices, there tended to be higher concentrations in urine. The AMD LFI detected CPS in 40.5% of urine samples, compared to 6.5% of serum samples, suggesting that urine is a preferable matrix for point-of-care diagnostic assays. IMPORTANCE Melioidosis is very challenging to diagnose. There is a clear need for a point-of-care assay for the detection of B. pseudomallei antigen directly from patient samples. The Active Melioidosis Detect lateral flow immunoassay detects the capsular polysaccharide (CPS) of B. pseudomallei and is designed for use on various clinical samples, including serum and urine. However, there are limited data regarding which clinical matrix is preferable for the detection of CPS. This study addresses this question by examining quantitative CPS levels in paired serum and urine samples and relating them to clinical parameters. Additionally, centrifugal concentration was performed on a subset of urine samples to determine whether this might enable the detection of CPS in samples in which it was initially present at low or undetectable levels. These results provide valuable insights into the detection of CPS in patients with melioidosis and suggest potential ways forward in the diagnosis and treatment of this challenging disease.
Asunto(s)
Burkholderia pseudomallei , Melioidosis , Humanos , Inmunoensayo/métodos , Melioidosis/diagnóstico , Melioidosis/microbiología , Polisacáridos , Sensibilidad y EspecificidadRESUMEN
Burkholderia pseudomallei causes significant global morbidity and mortality, with the highest disease burden in parts of Asia where culture-based diagnosis is often not available. We prospectively evaluated the Active Melioidosis Detect (AMD; InBios International, USA) lateral flow immunoassay (LFI) for rapid detection of B. pseudomallei in turbid blood cultures, pus, sputum, sterile fluid, urine, and sera. The performance of this test was compared to that of B. pseudomallei detection using monoclonal antibody latex agglutination (LA) and immunofluorescence assays (IFA), with culture as the gold standard. AMD was 99% (99/100; 95% confidence interval, 94.6 to 100%) sensitive and 100% (308/308; 98.8 to 100%) specific on turbid blood culture bottles, with no difference from LA or IFA. AMD specificity was 100% on pus (122/122; 97.0 to 100%), sputum (20/20; 83.2 to 100%), and sterile fluid (44/44; 92 to 100%). Sensitivity on these samples was as follows: pus, 47.1% (8/17; 23.0 to 72.2%); sputum, 33.3% (1/3; 0.84 to 90.6%); and sterile fluid, 0% (0/2; 0 to 84.2%). For urine samples, AMD had a positive predictive value of 94% (32/34; 79.7 to 98.5%) for diagnosing melioidosis in our cohort. AMD sensitivity on stored sera, collected prospectively from melioidosis cases during this study, was 13.9% (5/36; 4.7% to 29.5%) compared to blood culture samples taken on the same day. In conclusion, AMD is an excellent tool for rapid diagnosis of melioidosis from turbid blood cultures and maintains specificity across all sample types. It is a promising tool for urinary antigen detection, which could revolutionize diagnosis of melioidosis in resource-limited settings. Further work is required to improve sensitivity on nonblood culture samples.
Asunto(s)
Burkholderia pseudomallei , Inmunoensayo/normas , Melioidosis/diagnóstico , Adulto , Antígenos Bacterianos/inmunología , Bacteriemia/diagnóstico , Bacteriemia/mortalidad , Técnicas Bacteriológicas/normas , Pruebas Diagnósticas de Rutina , Femenino , Técnica del Anticuerpo Fluorescente Directa , Humanos , Laos , Pruebas de Fijación de Látex , Masculino , Melioidosis/mortalidad , Persona de Mediana Edad , Estudios Prospectivos , Sensibilidad y EspecificidadRESUMEN
Leptospirosis is a globally important cause of acute febrile illness, and a common cause of non-malarial fever in Asia, Africa, and Latin America. Simple rapid diagnostic tests (RDTs) are needed to enable health-care workers, particularly in low resource settings, to diagnose leptospirosis early and give timely targeted treatment. This study compared four commercially available RDTs to detect human IgM against Leptospira spp. in a head-to-head prospective evaluation in Mahosot Hospital, Lao PDR. Patients with an acute febrile illness consistent with leptospirosis (N = 695) were included in the study during the 2014 rainy season. Samples were tested with four RDTs: ("Test-it" [Life Assay, Cape Town, South Africa; N = 418]; "Leptorapide" [Linnodee, Ballyclare, Northern Ireland; N = 492]; "Dual Path Platform" [DPP] [Chembio, Medford, NY; N = 530]; and "SD-IgM" [Standard Diagnostics, Yongin, South Korea; N = 481]). Diagnostic performance characteristics were calculated and compared with a composite reference standard combining polymerase chain reaction (PCR) (rrs), microscopic agglutination tests (MATs), and culture. Of all patients investigated, 39/695 (5.6%) were positive by culture, PCR, or MAT. The sensitivity and specificity of the RDTs ranged greatly from 17.9% to 63.6% and 62.1% to 96.8%, respectively. None of the investigated RDTs reached a sensitivity or specificity of > 90% for detecting Leptospira infections on admission. In conclusion, our investigation highlights the challenges associated with Leptospira diagnostics, particularly in populations with multiple exposures. These findings emphasize the need for extensive prospective evaluations in multiple endemic settings to establish the value of rapid tools for diagnosing fevers to allow targeting of antibiotics.