Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 455
Filtrar
1.
Int J Mol Sci ; 25(19)2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39408960

RESUMEN

Transfer-RNA-derived fragments (tRFs) are a novel class of small non-coding RNAs that have been implicated in oncogenesis. tRFs may act as post-transcriptional regulators by recruiting AGO proteins and binding to highly complementary regions of mRNA at seed regions, resulting in the knockdown of the transcript. Therefore, tRFs may be critical to tumorigenesis and warrant investigation as potential biomarkers. Meanwhile, the incidence of papillary thyroid carcinoma (PTC) has increased in recent decades and current diagnostic technology stands to benefit from new detection methods. Although small non-coding RNAs have been studied for their role in oncogenesis, there is currently no standard for their use as PTC biomarkers, and tRFs are especially underexplored. Accordingly, we aim to identify dysregulated tRFs in PTC that may serve as biomarker candidates. We identified dysregulated tRFs and driver genes between PTC primary tumor samples (n = 511) and adjacent normal tissue samples (n = 59). Expression data were obtained from MINTbase v2.0 and The Cancer Genome Atlas. Dysregulated tRFs and genes were analyzed in tandem to find pairs with anticorrelated expression. Significantly anticorrelated tRF-gene pairs were then tested for potential binding affinity using RNA22-if a heteroduplex can form via complementary binding, this would support the hypothesized RNA silencing mechanism. Four tRFs were significantly dysregulated in PTC tissue (p < 0.05), with only AsnGTT 3'-tRF being upregulated. Binding affinity analysis revealed that tRF-30-RY73W0K5KKOV (AsnGTT 3'-tRF) exhibits sufficient complementarity to potentially bind to and regulate transcripts of SLC26A4, SLC5A8, DIO2, and TPO, which were all found to be downregulated in PTC tissue. In the present study, we identified dysregulated tRFs in PTC and found that AsnGTT 3'-tRF is a potential post-transcriptional regulator and biomarker.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , ARN de Transferencia , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/metabolismo , Cáncer Papilar Tiroideo/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Biología Computacional/métodos
2.
Cancers (Basel) ; 16(19)2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39409961

RESUMEN

BACKGROUND: The present study aimed to validate the accuracy of a tumor-specific antibody to target liver metastases of colorectal cancer. METHODS: A humanized anti-CEA antibody conjugated to a fluorescent dye (M5A-IR800) was tested for targeting human colorectal cancer liver metastases (CRLMs) expressing luciferase in an orthotopic mouse model. Orthotopic mouse models of CRLMs were established by implanting fragments of a luciferase-expressing human colorectal cancer cell line, LS174T, in the liver of nude mice. Mice received 50 µg M5A-IR800 72 h prior to imaging. To test co-localization, bioluminescence imaging was performed using D-luciferin, which was given via intraperitoneal injection just prior to imaging. RESULTS: Tumors were able to be visualized non-invasively through the skin with the luciferase-luciferin signal. Intra-abdominal imaging showed accurate labeling of CRLMs with M5A-IR800, which co-localized with the luciferase-luciferin signal. CONCLUSIONS: The present results validate the accuracy of a tumor-specific anti-CEA antibody in targeting liver metastases of colorectal cancer.

3.
Anticancer Res ; 44(10): 4213-4218, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39348992

RESUMEN

BACKGROUND/AIM: Methotrexate (MTX) resistance in osteosarcoma results in a very poor patient prognosis. We previously reported that super MTX-resistant osteosarcoma (143B-MTXSR) cells, selected from parental 143B osteosarcoma (143B-P) cells by culturing them with increasing concentrations of MTX, exhibited reduced malignancy, despite the over-expression of oncogenes. The present study explored the mechanism of reduced malignancy in the super MTX-resistant osteosarcoma cells. MATERIALS AND METHODS: Previously selected 143B-MTXSR cells which are 5,500 times more MTX resistant than parental cells, were used for this study. The status of methylated histone H3K9me3 and H3K27me3 marks was examined with western immunoblotting and compared between 143B-MTXSR and parental 143B-P cells. RESULTS: Histone H3K9me3 and H3K27me3 marks were over-expressed in 143B-MTXSR compared to 143B-P (p<0.05, p<0.01, respectively). CONCLUSION: Over-expression of histone H3K9me3 and H3K27me3 marks may be related to super-MTX resistance and to the loss of malignancy of super MTX-resistant osteosarcoma cells due to the fundamental relationship of methylation and cancer.


Asunto(s)
Neoplasias Óseas , Resistencia a Antineoplásicos , Histonas , Metotrexato , Osteosarcoma , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/metabolismo , Humanos , Metotrexato/farmacología , Resistencia a Antineoplásicos/genética , Histonas/metabolismo , Histonas/genética , Línea Celular Tumoral , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Metilación , Antimetabolitos Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
4.
Anticancer Res ; 44(9): 3777-3783, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39197933

RESUMEN

BACKGROUND/AIM: A major challenge in treating soft-tissue sarcoma is the development of drug resistance. Eribulin, an anti-tubulin agent, is used as a second-line chemotherapy for patients with unresectable or metastatic soft-tissue sarcoma. However, most patients with advanced soft-tissue sarcoma are resistant to eribulin and do not survive. Recombinant methioninase (rMETase) targets the fundamental and general hallmark of cancer, methionine addiction, termed the Hoffman Effect. The present study aimed to show how much rMETase could increase the efficacy of eribulin on eribulin-resistant fibrosarcoma cells in vitro. MATERIALS AND METHODS: HT1080 human fibrosarcoma cells were exposed to step-wise increasing concentrations of eribulin from 0.15-0.4 nM to establish eribulin-resistant HT1080 (ER-HT1080). ER-HT1080 cells were cultured in vitro and divided into four groups: untreated control; eribulin treated (0.15 nM); rMETase treated (0.75 U/ml); and eribulin (0.15 nM) plus rMETase (0.75 U/ml) treated. RESULTS: The IC50 of eribulin on ER-HT1080 cells was 0.95 nM compared to the IC50 of 0.15 nM on HT1080 cells, a 6-fold increase. The IC50 of rMETase on ER-HT1080 and HT1080 was 0.87 U/ml and 0.75 U/ml, respectively. The combination of rMETase (0.75 U/ml) and eribulin (0.15 nM) was synergistic on ER-HT1080 cells resulting in an inhibition of 80.1% compared to eribulin alone (5.0%) or rMETase alone (47.1%) (p<0.05). rMETase thus increased the efficacy of eribulin 16-fold on eribulin-resistant fibrosarcoma cells. CONCLUSION: The present study showed that the combination of eribulin and rMETase can overcome high eribulin resistance of fibrosarcoma. The present results demonstrate that combining rMETase with first- or second-line therapy for soft-tissue sarcoma has the potential to overcome the intractable clinical problem of drug-resistant soft-tissue sarcoma.


Asunto(s)
Liasas de Carbono-Azufre , Resistencia a Antineoplásicos , Fibrosarcoma , Furanos , Cetonas , Humanos , Cetonas/farmacología , Furanos/farmacología , Liasas de Carbono-Azufre/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/patología , Línea Celular Tumoral , Proteínas Recombinantes/farmacología , Antineoplásicos/farmacología , Sinergismo Farmacológico , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Policétidos Poliéteres
5.
Hum Cell ; 37(5): 1593-1601, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39103560

RESUMEN

Neuroendocrine tumors (NETs) of the pancreas are rare neoplasms that present complex challenges to diagnosis and treatment due to their indolent course. The incidence of pancreatic neuroendocrine tumors has increased significantly over the past two decades. A limited number of pancreatic neuroendocrine cell lines are currently available for the research. Here, we present 3D-iNET ORION, a novel 3-dimensional (spheroid) cell line, isolated from human pancreatic neuroendocrine tumor liver metastasis. Three-dimensionally grown (3D) cancer cell lines have gained interest over the past years as 3D cancer cell lines better recapitulate the in vivo structure of tumors, and are more suitable for in vitro and in vivo experiments. 3D-iNET ORION cancer cell line showed high potential to form tumorspheres when embedded in Matrigel matrix and expresses synaptophysin and EpCAM. Electron microscopy analysis of cancer cell line proved the presence of dense neurosecretory granules. When xenografted into athymic mice, 3D-iNET ORION cells produce slow-growing tumors, positive for chromogranin and synaptophysin. Human Core Exome Panel Analysis has shown that 3DiNET ORION cell line retains the genetic aberration profile detected in the original tumor. In conclusion, our newly developed neuroendocrine cancer cell line can be considered as a new research tool for in vitro and in vivo experiments.


Asunto(s)
Ratones Desnudos , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Tumores Neuroendocrinos/patología , Animales , Línea Celular Tumoral , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Esferoides Celulares/patología , Técnicas de Cultivo Tridimensional de Células/métodos , Modelos Biológicos , Ratones , Técnicas de Cultivo de Célula/métodos
6.
Anticancer Res ; 44(9): 3785-3791, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39197928

RESUMEN

BACKGROUND/AIM: Drug resistance has been a recalcitrant problem for sarcoma patients for many decades. Trabectedin is a second-line chemotherapy for soft-tissue sarcoma that often leads to resistance and death of the patients. The objective of the present study was to address the issue of trabectedin-chemoresistance in HT1080 fibrosarcoma cells by combining recombinant methioninase (rMETase) with trabectedin and examining their efficacy on trabectedin-resistant fibrosarcoma cells in vitro. MATERIALS AND METHODS: Trabectedin-resistant HT1080 (TR-HT1080) cells were generated by subjecting HT1080 human fibrosarcoma cells to increasing trabectedin concentrations (3.3-8 nM). IC50 values for trabectedin and rMETase were compared for HT1080 and TR-HT1080 cells. TR-HT 1080 cells were placed into four groups to determine synergy of rMETase and trabectedin on TR-HT1080 cells: a control group with no treatment; a group treated with trabectedin (3.3 nM); a group treated with rMETase (0.75 U/ml); and a group treated with both trabectedin (3.3 nM) and rMETase (0.75 U/ml). RESULTS: The IC50 value of trabectedin- on TR-HT1080 cells was 42.9 nM, whereas the IC50 value of trabectedin on the parental HT1080 cells was 3.3 nM, indicating a 13-fold increase. The combination of rMETase (0.75 U/ml) and trabectedin (3.3 nM) was synergistic on TR-HT1080 cells resulting in an inhibition of 64.2% compared to trabectedin alone (5.7%) or rMETase alone (50.5%) (p<0.05). rMETase increased the efficacy of trabectedin 11-fold on trabectedin-resistant fibrosarcoma cells. CONCLUSION: The combined administration of trabectedin and rMETase was synergistic on the viability of TR-HT1080 cells in vitro. The combination of rMETase and trabectedin has promising clinical potential for overcoming chemo-resistance of soft-tissue sarcoma.


Asunto(s)
Antineoplásicos Alquilantes , Liasas de Carbono-Azufre , Dioxoles , Resistencia a Antineoplásicos , Proteínas Recombinantes , Tetrahidroisoquinolinas , Trabectedina , Humanos , Trabectedina/farmacología , Liasas de Carbono-Azufre/administración & dosificación , Liasas de Carbono-Azufre/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Tetrahidroisoquinolinas/farmacología , Tetrahidroisoquinolinas/administración & dosificación , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Dioxoles/farmacología , Dioxoles/uso terapéutico , Dioxoles/administración & dosificación , Proteínas Recombinantes/farmacología , Línea Celular Tumoral , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/patología , Sinergismo Farmacológico
7.
Anticancer Res ; 44(8): 3261-3268, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39060039

RESUMEN

BACKGROUND/AIM: Doxorubicin is first-line therapy for soft-tissue sarcoma, but patients can develop resistance which is usually fatal. As a novel therapeutic strategy, the present study aimed to determine the synergy of recombinant methioninase (rMETase) and doxorubicin against HT1080 fibrosarcoma cells compared to Hs27 normal fibroblasts, and rMETase efficacy against doxorubicin-resistant HT1080 cells in vitro. MATERIALS AND METHODS: The 50% inhibitory concentrations (IC50) of doxorubicin and rMETase, as well as their combination efficacy, against HT1080 human fibrosarcoma cells, Hs27 normal human fibroblasts and doxorubicin-resistant HT1080 (DR-HT1080) cells were determined. Dual-color HT1080 cells which expressed red fluorescent protein (RFP) in the cytoplasm and green fluorescent protein (GFP) in the nuclei were used to visualize nuclear fragmentation during treatment. Nuclear fragmentation was observed with an IX71 fluorescence microscope. RESULTS: The IC50 for doxorubicin was 3.3 µM for HT1080 cells, 12.4 µM for DR-HT1080 cells, and 7.25 µM for Hs27 cells. The IC50 for rMETase was 0.75 U/ml for HT1080 cells, 0.42 U/ml for DR-HT1080 cells, and 0.93 U/ml for Hs27 cells. The combination of rMETase and doxorubicin was synergistic against fibrosarcoma cells but not against normal fibroblasts. The combination of doxorubicin plus rMETase also caused more fragmented nuclei than either treatment alone in HT1080 cells. rMETase alone was highly effective against the DR-HT1080 cells as well as the parental HT1080 cells. CONCLUSION: The present results indicate the future clinical potential of rMETase in combination with doxorubicin for fibrosarcoma, including doxorubicin-resistant fibrosarcoma.


Asunto(s)
Liasas de Carbono-Azufre , Doxorrubicina , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Fibrosarcoma , Proteínas Recombinantes , Humanos , Doxorrubicina/farmacología , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/patología , Fibrosarcoma/metabolismo , Liasas de Carbono-Azufre/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Proteínas Recombinantes/farmacología , Antibióticos Antineoplásicos/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo
8.
Cancer Diagn Progn ; 4(4): 402-407, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962551

RESUMEN

Background/Aim: Androgen-independent prostate cancer (AIPC) is resistant to androgen-depletion therapy and is a recalcitrant disease. Docetaxel is the first-line treatment for AIPC, but has limited efficacy and severe side-effects. All cancers are methionine-addicted, which is termed the Hoffman effect. Recombinant methioninase (rMETase) targets methionine addiction. The purpose of the present study was to determine if the combination of docetaxel and rMETase is effective for AIPC. Materials and Methods: The half-maximal inhibitory concentrations (IC50) of docetaxel and rMETase alone were determined for the human AIPC cell line PC-3 and Hs27 normal human fibroblasts in vitro. The synergistic efficacy for PC-3 and Hs27 using the combination of docetaxel and rMETase at their IC50s for PC-3 was determined. Results: The IC50 of docetaxel for PC-3 and for Hs27 was 0.72 nM and 0.94 nM, respectively. The IC50 of rMETase for PC-3 and for Hs27 was 0.67 U/ml and 0.76 U/ml, respectively. The combination of docetaxel and rMETase was synergistic for PC-3 but not Hs27 cells. Conclusion: The combination of a relatively low concentration of docetaxel and rMETase was synergistic and effective for AIPC. The present results also suggest that the effective concentration of docetaxel can be reduced by using rMETase, which may reduce toxicity. The present results also suggest the future clinical potential of the combination of docetaxel and rMETase for AIPC.

9.
Cancer Genomics Proteomics ; 21(4): 395-398, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38944421

RESUMEN

BACKGROUND/AIM: It has been recently demonstrated that a methionine-restricted diet increases the response to immune checkpoint inhibitors (ICIs) via an increase in PD-L1 in a syngeneic mouse colorectal-cancer model. Our laboratory has developed recombinant methioninase (rMETase) to restrict methionine. The aim of the present study was to determine if rMETase can increase PD-L1 expression in a human colorectal cancer cell line in vitro. MATERIALS AND METHODS: We evaluated the half-maximal inhibitory concentration (IC50) value of rMETase on HCT-116 human colorectal cancer cells. HCT-116 cells were treated with rMETase at the IC50 Western immunoblotting was used to compare PD-L1 expression in HCT-116 cells treated with and without rMETase. RESULTS: The IC50 value of rMETase on HCT-116 was 0.79 U/ml. Methionine restriction using rMETase increased PD-L1 expression compared to the untreated control (p<0.05). CONCLUSION: Methionine restriction with rMETase up-regulates PD-L1 expression in human colorectal cancer cells and the combination of rMETase and ICIs may have the potential to improve immunotherapy in human colorectal cancer.


Asunto(s)
Antígeno B7-H1 , Liasas de Carbono-Azufre , Neoplasias Colorrectales , Metionina , Proteínas Recombinantes , Humanos , Liasas de Carbono-Azufre/metabolismo , Metionina/farmacología , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Proteínas Recombinantes/farmacología , Células HCT116
10.
Anticancer Res ; 44(7): 2787-2792, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38925854

RESUMEN

BACKGROUND/AIM: Methotrexate (MTX) resistance in osteosarcoma leads to a very poor prognosis. In the present study, in order to further understand the basis and ramifications of MTX resistance in osteosarcoma, we selected an osteosarcoma cell line that has a 5,500-fold-increased MTX IC50 Materials and Methods: The super MTX-resistant 143B osteosarcoma cells (143B-MTXSR) were selected from MTX-sensitive parental human 143B osteosarcoma cells (143B-P) by continuous culture with step-wise increased amounts of MTX. To compare the malignancy of 143B-MTXSR and 143B-P, colony-formation capacity was compared with clonogenic assays on plastic and in soft agar. In addition, tumor growth was compared with orthotopic xenograft mouse models of osteosarcoma. Expression of dihydrofolate reductase (DHFR), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), and myelocytomatosis oncogene (MYC) was examined with western immunoblotting and compared in 143B-MTXSR and 143B-P cells. RESULTS: 143B-MTXSR had a 5,500-fold increase in the MTX IC50 compared to the parental 143B-P cells. Expression of DHFR was increased 10-fold in 143B-MTXSR compared to 143B-P (p<0.01). 143B-MTXSR cells had reduced colony-formation capacity on plastic (p=0.032) and in soft agar (p<0.01) compared to 143B-P and reduced tumor growth in orthotopic xenograft mouse models (p<0.001). These results demonstrate that 143B-MTXSR had reduced malignancy. 143B-MTXSR also showed an increased expression of PI3K (p<0.01), phosphorylated (activated) AKT (p=0.031), phosphorylated mTOR (p=0.043), and c-MYC (p=0.024) compared to 143B-P. CONCLUSION: The present study demonstrates that the increased expression of DHFR, PI3K/AKT/mTOR and c-MYC appears to be linked to super MTX resistance and, paradoxically, to reduced malignancy. The present results suggest that DHFR may be a powerful tumor suppressor when highly amplified.


Asunto(s)
Resistencia a Antineoplásicos , Metotrexato , Osteosarcoma , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-myc , Serina-Treonina Quinasas TOR , Tetrahidrofolato Deshidrogenasa , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Osteosarcoma/metabolismo , Osteosarcoma/genética , Metotrexato/farmacología , Humanos , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Animales , Resistencia a Antineoplásicos/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/genética , Amplificación de Genes , Transducción de Señal/efectos de los fármacos , Ratones Desnudos , Antimetabolitos Antineoplásicos/farmacología
11.
Ann Surg Oncol ; 31(9): 6291-6299, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38888861

RESUMEN

BACKGROUND: Gastric cancer poses a major diagnostic and therapeutic challenge as surgical resection provides the only opportunity for a cure. Specific labeling of gastric cancer could distinguish resectable and nonresectable disease and facilitate an R0 resection, which could improve survival. METHODS: Two patient-derived gastric cancer lines, KG8 and KG10, were established from surgical specimens of two patients who underwent gastrectomy for gastric adenocarcinoma. Harvested tumor fragments were implanted into the greater curvature of the stomach to establish patient-derived orthotopic xenograft (PDOX) models. M5A (humanized anti-CEA antibody) or IgG control antibodies were conjugated with the near-infrared dye IRDye800CW. Mice received 50 µg of M5A-IR800 or 50 µg of IgG-IR800 intravenously and were imaged after 72 hr. Fluorescence imaging was performed by using the LI-COR Pearl Imaging System. A tumor-to-background ratio (TBR) was calculated by dividing the mean fluorescence intensity of the tumor versus adjacent stomach tissue. RESULTS: M5A-IR800 administration resulted in bright labeling of both KG8 and K10 tumors. In the KG8 PDOX models, the TBR for M5A-IR800 was 5.85 (SE ± 1.64) compared with IgG-IR800 at 0.70 (SE ± 0.17). The K10 PDOX models had a TBR of 3.71 (SE ± 0.73) for M5A-IR800 compared with 0.66 (SE ± 0.12) for IgG-IR800. CONCLUSIONS: Humanized anti-CEA (M5A) antibodies conjugated to fluorescent dyes provide bright and specific labeling of gastric cancer PDOX models. This tumor-specific fluorescent antibody is a promising potential clinical tool to detect the extent of disease for the determination of resectability as well as to visualize tumor margins during gastric cancer resection.


Asunto(s)
Adenocarcinoma , Anticuerpos Monoclonales Humanizados , Antígeno Carcinoembrionario , Colorantes Fluorescentes , Neoplasias Gástricas , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Gástricas/cirugía , Neoplasias Gástricas/patología , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/diagnóstico por imagen , Animales , Humanos , Ratones , Antígeno Carcinoembrionario/inmunología , Adenocarcinoma/cirugía , Adenocarcinoma/patología , Adenocarcinoma/inmunología , Adenocarcinoma/diagnóstico por imagen , Células Tumorales Cultivadas , Femenino , Indoles , Imagen Óptica/métodos , Gastrectomía , Ratones Desnudos , Línea Celular Tumoral
12.
Anticancer Res ; 44(6): 2359-2367, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821601

RESUMEN

BACKGROUND/AIM: The alkylating agent trabectedin, which binds the minor groove of DNA, is second-line therapy for soft-tissue sarcoma but has only moderate efficacy. The aim of the present study was to determine the synergistic efficacy of recombinant methioninase (rMETase) and trabectedin on fibrosarcoma cells in vitro, compared with normal fibroblasts. MATERIALS AND METHODS: HT1080 human fibrosarcoma cells expressing green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm and Hs27 normal human fibroblasts, were used. Each cell line was cultured in vitro and divided into four groups: no-treatment control; trabectedin treated; rMETase treated; and trabectedin plus rMETase treated. The dual-color HT1080 cells were used to quantitate nuclear fragmentation in each treatment group. RESULTS: The combination of rMETase and trabectedin was highly synergistic to decrease HT1080 cell viability. In contrast, there was no synergy on Hs27 cells. Moreover, nuclear fragmentation occurred synergistically with the combination of trabectedin and rMETase on dual-color HT1080 cells. CONCLUSION: The combination treatment of trabectedin plus rMETase was highly synergistic on fibrosarcoma cells in vitro suggesting that the combination can improve the outcome of trabectedin alone in future clinical studies. The lack of synergy of rMETase and trabectedin on normal fibroblasts suggests the combination is not toxic to normal cells. Synergy of the two drugs may be due to the high rate of nuclear fragmentation on treated HT1080 cells, and the late-S/G2 cell-cycle block of cancer cells by rMETase, which is a target for trabectedin. The results of the present study suggest the future clinical potential of the combination of rMETase and trabectedin for soft-tissue sarcoma.


Asunto(s)
Liasas de Carbono-Azufre , Supervivencia Celular , Dioxoles , Sinergismo Farmacológico , Fibroblastos , Fibrosarcoma , Tetrahidroisoquinolinas , Trabectedina , Humanos , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/patología , Fibrosarcoma/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Trabectedina/farmacología , Liasas de Carbono-Azufre/farmacología , Liasas de Carbono-Azufre/administración & dosificación , Tetrahidroisoquinolinas/farmacología , Dioxoles/farmacología , Supervivencia Celular/efectos de los fármacos , Proteínas Recombinantes/farmacología , Línea Celular Tumoral , Antineoplásicos Alquilantes/farmacología , Núcleo Celular/metabolismo , Núcleo Celular/efectos de los fármacos
13.
iScience ; 27(4): 109457, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38558931

RESUMEN

Helicobacter pylori (H. pylori) infection is a known cause of many digestive diseases, including gastritis, peptic ulcers, and gastric cancer. However, the underlying mechanisms by which H. pylori infection triggers these disorders are still not clearly understood. Gastric cancer is a slow progressing disease, which makes it difficult to study. We have developed an accelerated disease progression mouse model, which leverages mice deficient in the myeloid differentiation primary response 88 gene (Myd88-/-) infected with Helicobacter felis (H. felis). Using this model and gastric biopsy samples from patients, we report that activation of the Toll/interleukin-1 receptor (TIR)-domain-containing adaptor inducing interferon-ß (TRIF)-type I interferon (IFN-I) signaling pathway promotes Helicobacter-induced disease progression toward severe gastric pathology and gastric cancer development. Further, results implicated downstream targets of this pathway in disease pathogenesis. These findings may facilitate stratification of Helicobacter-infected patients and thus enable treatment prioritization of patients.

14.
In Vivo ; 38(3): 1058-1063, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38688611

RESUMEN

BACKGROUND/AIM: Colorectal cancer (CRC) is the third-leading cause of death in the world. Although the prognosis has improved due to improvement of chemotherapy, metastatic CRC is still a recalcitrant disease, with a 5-year survival of only 13%. Irinotecan (IRN) is used as first-line chemotherapy for patients with unresectable CRC. However, there are severe side effects, such as neutropenia and diarrhea, which are dose-limiting. We have previously shown that methionine restriction (MR), effected by recombinant methioninase (rMETase), lowered the effective dose of IRN of colon-cancer cells in vitro. The aim of the present study was to evaluate the efficacy of the combination of low-dose IRN and MR on colon-cancer in nude mice. MATERIALS AND METHODS: HCT-116 colon-cancer cells were cultured and subcutaneously injected into the flank of nude mice. After the tumor size reached approximately 100 mm3, 18 mice were randomized into three groups; Group 1: untreated control on a normal diet; Group 2: high-dose IRN on a normal diet (2 mg/kg, i.p.); Group 3: low-dose IRN (1 mg/kg i.p.) on MR effected by a methionine-depleted diet. RESULTS: There was no significant difference between the control mice and the mice treated with high-dose IRN, without MR. However, low-dose IRN combined with MR was significantly more effective than the control and arrested colon-cancer growth (p=0.03). Body weight loss was reversible in the mice treated by low-dose IRN combined with MR. CONCLUSION: The combination of low-dose IRN and MR acted synergistically in arresting HCT-116 colon-cancer grown in nude mice. The present study indicates the MR has the potential to reduce the effective dose of IRN in the clinic.


Asunto(s)
Liasas de Carbono-Azufre , Neoplasias del Colon , Irinotecán , Metionina , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Irinotecán/administración & dosificación , Irinotecán/farmacología , Metionina/administración & dosificación , Humanos , Ratones , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Camptotecina/análogos & derivados , Camptotecina/farmacología , Camptotecina/administración & dosificación , Camptotecina/uso terapéutico , Modelos Animales de Enfermedad , Células HCT116 , Línea Celular Tumoral , Carga Tumoral/efectos de los fármacos
15.
Biomolecules ; 14(3)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38540693

RESUMEN

Claudins (CLDN1-CLDN24) are a family of tight junction proteins whose dysregulation has been implicated in tumorigeneses of many cancer types. In colorectal cancer (CRC), CLDN1, CLDN2, CLDN4, and CLDN18 have been shown to either be upregulated or aberrantly expressed. In the normal colon, CLDN1 and CLDN3-7 are expressed. Although a few claudins, such as CLDN6 and CLDN7, are expressed in CRC their levels are reduced compared to the normal colon. The present review outlines the expression profiles of claudin proteins in CRC and those that are potential biomarkers for prognostication.


Asunto(s)
Claudinas , Neoplasias Colorrectales , Humanos , Claudina-1/genética , Claudinas/genética , Proteínas de Uniones Estrechas , Neoplasias Colorrectales/genética
16.
Cancer Lett ; 587: 216704, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38360138

RESUMEN

Despite significant advancements in prevention and treatment, colorectal cancer (CRC) remains the third leading cause of cancer-related deaths. Animal models, including xenografts, syngeneic, and genetically engineered, have emerged as indispensable tools in cancer research. These models offer a valuable platform to address critical questions regarding molecular pathogenesis and test therapeutic interventions before moving on to clinical trials. Advancements in CRC animal models have also facilitated the advent of personalized and precision medicine. Patient-derived xenografts and genetically engineered mice that mirror features of human tumors allow for tailoring treatments to specific CRC subtypes, improving treatment outcomes and quality of life. To overcome the limitations of individual model systems, recent studies have employed a multi-modal approach, combining different animal models, 3D organoids, and in vitro studies. This integrative approach provides a comprehensive understanding of CRC biology, including the tumor microenvironment and therapeutic responses, driving the development of more effective and personalized therapeutic interventions. This review discusses the animal models used for CRC research, including recent advancements and limitations of these animal models.


Asunto(s)
Neoplasias Colorrectales , Ratones , Humanos , Animales , Neoplasias Colorrectales/patología , Calidad de Vida , Modelos Animales de Enfermedad , Microambiente Tumoral
17.
Transl Cancer Res ; 13(1): 437-452, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38410209

RESUMEN

Background: Complete tumor removal is critical for achieving a good prognosis in patients but remains challenging for surgeons. Near-infrared fluorescence-guided surgery (NIRFGS) enables surgeons to accurately localize tumors in real time and facilitates accurate resection. Indocyanine green (ICG) has been approved by the U.S. Food and Drug Administration and the National Medical Products Administration for many years. Although the application of ICG has progressed for a variety of surgeries, there are inherent limitations to ICG, including poor water solubility and photostability, short blood half-life, and aggregation in blood, resulting in poor imaging performance. We found that mixing ICG with human serum albumin (HSA) preoperatively and then injecting it can improve the imaging performance. Methods: We prepared fluorescent probes by combining ICG with HSA and identified their optimal ratio via in vitro absorption measurement and emission spectrum characterization of ICG-HSA complex with different mixing ratios and concentration gradients. Subsequently, under the optimal ratio and clinical simulated concentration, we conducted dynamic change analysis of the fluorescence spectral properties after mixing. We then compared the uptake of ICG-HSA in vitro for two different cell types and the imaging performance of different molar ratios of ICG and HSA in mouse models. Results: Through in vitro absorption and emission spectrum characterization of ICG-HSA mixtures with different mixing ratios and concentration gradients, the optimal ratio of the mixture was obtained (ICG:HSA =4:5). Using this ratio, clinical simulated concentration, and mixing, we completed the dynamic change analysis of the fluorescence spectrum properties. The results verified that HSA can improve the dispersion and stability of ICG in aqueous solution, reduce the proportion of free-state ICG, and thus improve the biodistribution. Moreover, the fluorescence performance of ICG was improved. ICG-HSA and ICG uptake in MDA-MB-231 cells and imaging in vivo showed that HSA increased the enrichment of ICG in tumor compared to ICG alone (ICG-HSAfluorescence intensity =237.3±10.7 vs. ICGfluorescence intensity =127.1±10.7). Compared with ICG alone, ICG-HSA provided a clearer tumor boundary and higher tumor-to-background ratio (TBR) (ICG-HSATBRmax 3.49±0.56 vs. ICGTBRmax 1.94±0.23). Conclusions: This study suggests that ICG-HSA can achieve higher tumor-to-background contrast with shorter time and can provide an overall superior imaging performance compared to ICG alone, thus exhibiting considerable potential for clinical application.

18.
Anticancer Res ; 44(3): 921-928, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423656

RESUMEN

BACKGROUND/AIM: The aim of the present study was to determine the synergy of recombinant methioninase (rMETase) and the anti-tubulin agent eribulin on fibrosarcoma cells, in comparison to normal fibroblasts, in vitro. MATERIALS AND METHODS: HT1080 human fibrosarcoma cells and HS27 human fibroblasts were used for in vitro experiments. Four groups were analyzed in vitro: No-treatment control; eribulin; rMETase; eribulin plus rMETase. Dual-color HT1080 cells which express red fluorescent protein (RFP) in the cytoplasm and green fluorescent protein (GFP) in the nuclei were used to visualize cytoplasmic and nuclear dynamics during treatment. RESULTS: Eribulin combined with rMETase greatly decreased the viability of HT 1080 cells. In contrast, eribulin combined with rMETase did not show synergy on Hs27 normal fibroblasts. Eribulin combined with rMETase also caused more fragmentation of the nucleus than all other treatments. CONCLUSION: The combination treatment of eribulin plus rMETase demonstrated efficacy on fibrosarcoma cells in vitro. In contrast, normal fibroblasts were resistant to this combination, indicating the potential clinical applicability of the treatment.


Asunto(s)
Liasas de Carbono-Azufre , Fibrosarcoma , Furanos , Cetonas , Policétidos Poliéteres , Humanos , Liasas de Carbono-Azufre/uso terapéutico , Línea Celular Tumoral , Fibrosarcoma/tratamiento farmacológico , Fibroblastos , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico
19.
Biochem Biophys Res Commun ; 695: 149418, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38176171

RESUMEN

Glioma is a highly recalcitrant disease with a 5-year survival of 6.8 %. Temozolomide (TMZ), first-line therapy for glioma, is more effective in O6-methylguanine-DNA methyltransferase (MGMT)-negative gliomas than in MGMT-positive gliomas as MGMT confers resistance to TMZ. Methionine restriction is effective for many cancers in mouse models including glioma. The concern is that methionine restriction could induce MGMT by decreasing DNA methylation and confer resistance to TMZ. In the present study, we investigated the efficacy of combining methionine restriction with TMZ for the treatment of MGMT-negative glioma, and whether methionine restriction induced MGMT. Human MGMT-negative U87 glioma cells were used to determine the efficacy of TMZ combined with methionine restriction. Recombinant methioninase (rMETase) inhibited U87 glioma growth without induction of MGMT in vitro. The combination of rMETase and TMZ inhibited U87 cell proliferation more than either agent alone in vitro. In the orthotopic nude-mouse model, the combination of TMZ and a methionine-deficient diet was much more effective than TMZ alone: two mice out of five were cured of glioma by the combination. No mice died during the treatment period. Methionine restriction enhanced the efficacy of TMZ in MGMT-negative glioma without inducing MGMT, demonstrating potential clinical promise for improved outcome of a currently incurable disease.


Asunto(s)
Neoplasias Encefálicas , Glioma , Temozolomida , Animales , Humanos , Ratones , Antineoplásicos Alquilantes/uso terapéutico , Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Metilasas de Modificación del ADN/farmacología , Metilasas de Modificación del ADN/uso terapéutico , Enzimas Reparadoras del ADN/genética , Resistencia a Antineoplásicos , Glioma/tratamiento farmacológico , Glioma/genética , Metionina/farmacología , Ratones Desnudos , O(6)-Metilguanina-ADN Metiltransferasa , Racemetionina/farmacología , Temozolomida/uso terapéutico , Temozolomida/farmacología , Proteínas Supresoras de Tumor/genética
20.
bioRxiv ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-37745574

RESUMEN

BACKGROUND: Although differentiation therapy can cure some hematologic malignancies, its curative potential remains unrealized in solid tumors. This is because conventional computational approaches succumb to the thunderous noise of inter-/intratumoral heterogeneity. Using colorectal cancers (CRCs) as an example, here we outline a machine learning(ML)-based approach to track, differentiate, and selectively target cancer stem cells (CSCs). METHODS: A transcriptomic network was built and validated using healthy colon and CRC tissues in diverse gene expression datasets (~5,000 human and >300 mouse samples). Therapeutic targets and perturbation strategies were prioritized using ML, with the goal of reinstating the expression of a transcriptional identifier of the differentiated colonocyte, CDX2, whose loss in poorly differentiated (CSC-enriched) CRCs doubles the risk of relapse/death. The top candidate target was then engaged with a clinical-grade drug and tested on 3 models: CRC lines in vitro, xenografts in mice, and in a prospective cohort of healthy (n = 3) and CRC (n = 23) patient-derived organoids (PDOs). RESULTS: The drug shifts the network predictably, induces CDX2 and crypt differentiation, and shows cytotoxicity in all 3 models, with a high degree of selectivity towards all CDX2-negative cell lines, xenotransplants, and PDOs. The potential for effective pairing of therapeutic efficacy (IC50) and biomarker (CDX2-low state) is confirmed in PDOs using multivariate analyses. A 50-gene signature of therapeutic response is derived and tested on 9 independent cohorts (~1700 CRCs), revealing the impact of CDX2-reinstatement therapy could translate into a ~50% reduction in the risk of mortality/recurrence. CONCLUSIONS: Findings not only validate the precision of the ML approach in targeting CSCs, and objectively assess its impact on clinical outcome, but also exemplify the use of ML in yielding clinical directive information for enhancing personalized medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA