Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Tissue Eng Regen Med ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215940

RESUMEN

BACKGROUND: The developmental abnormality spina bifida is hallmarked by missing tissues (e.g. skin) and exposure of the spinal cord to the amniotic fluid, which can negatively impact neurological development. Surgical closure of the skin in utero limits neurological damage, but in large defects this results in scarring and contractures. Stimulating skin regeneration in utero would greatly benefit treatment outcome. Previously, we demonstrated that a porous type I collagen (COL) scaffold, functionalized with heparin (HEP), fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor (VEGF) (COL-HEP/GF) improved pre- and postnatal skin regeneration in a fetal sheep full thickness wound model. In this study we uncover the early events associated with enhanced skin regeneration. METHODS: We investigated the gene expression profiles of healing fetal skin wounds two weeks after implantation of the COL(-HEP/GF) scaffolds. Using laser dissection and microarrays, differentially expressed genes (DEG) were identified in the epidermis and dermis between untreated wounds, COL-treated wounds and wounds treated with COL-HEP/GF. Biological processes were identified using gene enrichment analysis and DEG were clustered using protein-protein-interaction networks. RESULTS: COL-HEP/GF influences various interesting biological processes involved in wound healing. Although the changes were modest, using protein-protein-interaction networks we identified a variety of clustered genes that indicate COL-HEP/GF induces a tight but subtle control over cell signaling and extracellular matrix organization. CONCLUSION: These data offer a novel perspective on the key processes involved in (fetal) wound healing, where a targeted and early interference during wound healing can result in long-term enhanced effects on skin regeneration.

2.
Stem Cell Res ; 78: 103462, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851031

RESUMEN

Spinocerebellar Ataxia Type 7 (SCA7) is an autosomal dominantly inherited disorder, primarily characterized by cerebellar ataxia and visual loss. SCA7 is caused by a CAG repeat expansion in exon 3 of the ATXN7 gene. We generated human induced pluripotent stem cells (hiPSCs) from peripheral blood-derived erythroblasts from two SCA7 patients (LUMCi051-A,B and LUMCi052-A,B,C) using integration-free episomal vectors. All hiPSC clones express pluripotency factors, show a normal karyotype, and can differentiate into the three germ layers. These lines can be used for in vitro disease modeling and therapy testing.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ataxias Espinocerebelosas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ataxias Espinocerebelosas/patología , Ataxias Espinocerebelosas/genética , Línea Celular , Masculino , Diferenciación Celular , Femenino , Adulto
3.
Nat Commun ; 14(1): 5466, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749075

RESUMEN

The interplay between 3D chromatin architecture and gene silencing is incompletely understood. Here, we report a novel point mutation in the non-canonical SMC protein SMCHD1 that enhances its silencing capacity at endogenous developmental targets. Moreover, it also results in enhanced silencing at the facioscapulohumeral muscular dystrophy associated macrosatellite-array, D4Z4, resulting in enhanced repression of DUX4 encoded by this repeat. Heightened SMCHD1 silencing perturbs developmental Hox gene activation, causing a homeotic transformation in mice. Paradoxically, the mutant SMCHD1 appears to enhance insulation against other epigenetic regulators, including PRC2 and CTCF, while depleting long range chromatin interactions akin to what is observed in the absence of SMCHD1. These data suggest that SMCHD1's role in long range chromatin interactions is not directly linked to gene silencing or insulating the chromatin, refining the model for how the different levels of SMCHD1-mediated chromatin regulation interact to bring about gene silencing in normal development and disease.


Asunto(s)
Cromatina , Proteínas Cromosómicas no Histona , Distrofia Muscular Facioescapulohumeral , Animales , Ratones , Cromatina/genética , Epigenómica , Silenciador del Gen , Genes Homeobox , Distrofia Muscular Facioescapulohumeral/genética , Proteínas Cromosómicas no Histona/genética
4.
Mol Ther Nucleic Acids ; 26: 813-827, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34729250

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is one of the most prevalent skeletal muscle dystrophies. Skeletal muscle pathology in individuals with FSHD is caused by inappropriate expression of the transcription factor DUX4, which activates different myotoxic pathways. At the moment there is no molecular therapy that can delay or prevent skeletal muscle wasting in FSHD. In this study, a systemically delivered antisense oligonucleotide (ASO) targeting the DUX4 transcript was tested in vivo in ACTA1-MCM;FLExDUX4 mice that express DUX4 in skeletal muscles. We show that the DUX4 ASO was well tolerated and repressed the DUX4 transcript, DUX4 protein, and mouse DUX4 target gene expression in skeletal muscles. In addition, the DUX4 ASO alleviated the severity of skeletal muscle pathology and partially prevented the dysregulation of inflammatory and extracellular matrix genes. DUX4 ASO-treated ACTA1-MCM;FLExDUX4 mice performed better on a treadmill; however, the hanging grid and four-limb grip strength tests were not improved compared to control ASO-treated ACTA1-MCM;FLExDUX4 mice. This study shows that systemic delivery of ASOs targeting DUX4 is a promising therapeutic strategy for FSHD and strategies that further improve the ASO efficacy in skeletal muscle are warranted.

5.
Skelet Muscle ; 10(1): 27, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004076

RESUMEN

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is a skeletal muscle disorder that is caused by derepression of the transcription factor DUX4 in skeletal muscle cells. Apart from SMCHD1, DNMT3B was recently identified as a disease gene and disease modifier in FSHD. However, the exact role of DNMT3B at the D4Z4 repeat array remains unknown. METHODS: To determine the role of Dnmt3b on DUX4 repression, hemizygous mice with a FSHD-sized D4Z4 repeat array (D4Z4-2.5 mice) were cross-bred with mice carrying an in-frame exon skipping mutation in Dnmt3b (Dnmt3bMommeD14 mice). Additionally, siRNA knockdowns of Dnmt3b were performed in mouse embryonic stem cells (mESCs) derived from the D4Z4-2.5 mouse model. RESULTS: In mESCs derived from D4Z4-2.5 mice, Dnmt3b was enriched at the D4Z4 repeat array and DUX4 transcript levels were upregulated after a knockdown of Dnmt3b. In D4Z4-2.5/Dnmt3bMommeD14 mice, Dnmt3b protein levels were reduced; however, DUX4 RNA levels in skeletal muscles were not enhanced and no pathology was observed. Interestingly, D4Z4-2.5/Dnmt3bMommeD14 mice showed a loss of DNA methylation at the D4Z4 repeat array and significantly higher DUX4 transcript levels in secondary lymphoid organs. As these lymphoid organs seem to be more sensitive to epigenetic modifiers of the D4Z4 repeat array, different immune cell populations were quantified in the spleen and inguinal lymph nodes of D4Z4-2.5 mice crossed with Dnmt3bMommeD14 mice or Smchd1MommeD1 mice. Only in D4Z4-2.5/Smchd1MommeD1 mice the immune cell populations were disturbed. CONCLUSIONS: Our data demonstrates that loss of Dnmt3b results in derepression of DUX4 in lymphoid tissues and mESCs but not in myogenic cells of D4Z4-2.5/Dnmt3bMommeD14 mice. In addition, the Smchd1MommeD1 variant seems to have a more potent role in DUX4 derepression. Our studies suggest that the immune system is particularly but differentially sensitive to D4Z4 chromatin modifiers which may provide a molecular basis for the yet underexplored immune involvement in FSHD.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Proteínas de Homeodominio/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Animales , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Proteínas de Homeodominio/genética , Ganglios Linfáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/metabolismo , Mutación , Bazo/metabolismo , ADN Metiltransferasa 3B
6.
Curr Opin Neurol ; 33(5): 635-640, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32796277

RESUMEN

PURPOSE OF REVIEW: Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disorder, which is caused by incomplete repression of the transcription factor double homeobox 4 (DUX4) in skeletal muscle. To date, there is no DUX4-targeting treatment to prevent or delay disease progression. In the present review, we summarize developments in therapeutic strategies with the focus on inhibiting DUX4 and DUX4 target gene expression. RECENT FINDINGS: Different studies show that DUX4 and its target genes can be repressed with genetic therapies using diverse strategies. Additionally, different small compounds can reduce DUX4 and its target genes in vitro and in vivo. SUMMARY: Most studies that show DUX4 repression by genetic therapies have only been tested in vitro. More efforts should be made to test them in vivo for clinical translation. Several compounds have been shown to prevent DUX4 and target gene expression in vitro and in vivo. However, their efficiency and specificity has not yet been shown. With emerging clinical trials, the clinical benefit from DUX4 repression in FSHD will likely soon become apparent.


Asunto(s)
Genes Homeobox , Proteínas de Homeodominio/genética , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Regulación de la Expresión Génica , Humanos , Distrofia Muscular Facioescapulohumeral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA