Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Autophagy ; : 1-16, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39245437

RESUMEN

Macroautophagy/autophagy is a constitutively active catabolic lysosomal degradation pathway, often found dysregulated in human diseases. It is often considered to act in a cytoprotective manner and is commonly upregulated in cells undergoing stress. Its initiation is regulated at the protein level and does not require de novo protein synthesis. Historically, autophagy has been regarded as nonselective; however, it is now clear that different stimuli can lead to the selective degradation of cellular components via selective autophagy receptors (SARs). Due to its selective nature and the existence of multiple degradation pathways potentially acting in concert, monitoring of autophagy flux, i.e. selective autophagy-dependent protein degradation, should address this complexity. Here, we introduce a targeted proteomics approach monitoring abundance changes of 37 autophagy-related proteins covering process-relevant proteins such as the initiation complex and the Atg8-family protein lipidation machinery, as well as most known SARs. We show that proteins involved in autophagosome biogenesis are upregulated and spared from degradation under autophagy-inducing conditions in contrast to SARs, in a cell-line dependent manner. Classical bulk stimuli such as nutrient starvation mainly induce degradation of ubiquitin-dependent soluble SARs and not of ubiquitin-independent, membrane-bound SARs. In contrast, treatment with the iron chelator deferiprone leads to the degradation of ubiquitin-dependent and -independent SARs linked to mitophagy and reticulophagy/ER-phagy. Our approach is automatable and supports large-scale screening assays paving the way to (pre)clinical applications and monitoring of specific autophagy flux.Abbreviation: AMBRA1: autophagy and beclin 1 regulator 1; ATG: autophagy related; BafA1: bafilomycin A1; BNIP1: BCL2 interacting protein 1; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3-like; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCPG1: cell cycle progression 1; CV: coefficients of variations; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DFP: deferiprone; ER: endoplasmic reticulum; FKBP8: FKBP prolyl isomerase 8; GABARAPL: GABA type A receptor associated protein like; LC: liquid chromatography; LOD: limit of detection; LOQ: limit of quantification; MAP1LC3: microtubule associated protein 1 light chain 3; MS: mass spectrometry; NCOA4: nuclear receptor coactivator 4; NBR1: NBR1 autophagy cargo receptor; NUFIP1: nuclear FMR1 interacting protein 1; OPTN: optineurin; PHB2: prohibitin 2; PNPLA2/ATGL: patatin like phospholipase domain containing 2; POI: protein of interest; PTM: posttranslational modification; PRM: parallel reaction monitoring; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RETREG1/FAM134B: reticulophagy regulator 1; RPS6KB1: ribosomal protein S6 kinase B1; RTN3: reticulon 3; SARs: selective autophagy receptors; SQSTM1/p62: sequestosome 1; STBD1: starch binding domain 1; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TNIP1: TNFAIP3 interacting protein 1; TOLLIP: toll interacting protein; ULK1: unc-51 like autophagy activating kinase 1; WBP2: WW domain binding protein 2; WDFY3/Alfy: WD repeat and FYVE domain containing 3; WIPI2: WD repeat domain, phosphoinositide interacting 2.

2.
Front Cell Dev Biol ; 12: 1460061, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39324068

RESUMEN

Mitochondrial quality control is finely tuned by mitophagy, the selective degradation of mitochondria through autophagy, and mitochondrial biogenesis. Removal of damaged mitochondria is essential to preserve cellular bioenergetics and prevent detrimental events such as sustained mitoROS production, pro-apoptotic cytochrome c release or mtDNA leakage. The array of tools available to study mitophagy is very limited but in constant development. Almost a decade ago, we developed a method to assess mitophagy flux using MitoTracker Deep Red in combination with lysosomal inhibitors. Now, using the novel tandem-fluorescence reporter mito-QC (mCherry-GFP-FIS1101-152) that allows to differentiate between healthy mitochondria (mCherry+GFP+) and mitolysosomes (mCherry+GFP-), we have developed a robust and quantitative method to assess mitophagy by flow cytometry. This approach has been validated in ARPE-19 cells using PINK1/Parkin-dependent (CCCP) and PINK1/Parkin-independent (DFP) positive controls and complementary techniques. Furthermore, we show that the mito-QC reporter can be multiplexed, especially if using spectral flow cytometry, to simultaneously study other cellular parameters such as viability or ROS production. Using this technique, we evaluated and characterized two prospective mitophagy inducers and further dissected their mechanism of action. Finally, using mito-QC reporter mice, we developed a protocol to measure mitophagy levels in the retina ex vivo. This novel methodology will propel mitophagy research forward and accelerate the discovery of novel mitophagy modulators.

3.
Autophagy ; : 1-2, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39133039

RESUMEN

Dysregulated macroautophagy/autophagy is one of the hallmarks of aging and has also been linked to higher incidence of several age-associated diseases such as age-related macular degeneration (AMD). The main cell type affected in AMD is the retinal pigment epithelium (RPE), and this disease can lead to central vision loss. Despite affecting around 8.7% of the population between 45-85 years, its etiopathogenesis remains unknown. In our recent manuscript using the pharmacological sodium iodate (SI) model of AMD we identified severe lysosomal membrane permeabilization (LMP) in the RPE, that leads to autophagy flux blockage and proteostasis defects. Treatment with the natural compound urolithin A (UA) reduces RPE cell death and alleviates vision loss, concurrent with full autophagy restoration. While UA was initially described as a specific mitophagy inducer, we now show that it is also able to promote SQSTM1/p62-dependent lysophagy in the context of lysosomal damage and LMP. Genetic downregulation of SQSTM1/p62 fully abolishes the effect of UA on lysophagy while mitophagy stimulation remains unaffected. In summary, these findings highlight the wide range of pathways modulated by UA and its potential implementation in the management of AMD and other diseases involving lysosomal damage.

4.
Mol Neurodegener ; 19(1): 49, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890703

RESUMEN

BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of blindness in elderly people in the developed world, and the number of people affected is expected to almost double by 2040. The retina presents one of the highest metabolic demands in our bodies that is partially or fully fulfilled by mitochondria in the neuroretina and retinal pigment epithelium (RPE), respectively. Together with its post-mitotic status and constant photooxidative damage from incoming light, the retina requires a tightly-regulated housekeeping system that involves autophagy. The natural polyphenol Urolithin A (UA) has shown neuroprotective benefits in several models of aging and age-associated disorders, mostly attributed to its ability to induce mitophagy and mitochondrial biogenesis. Sodium iodate (SI) administration recapitulates the late stages of AMD, including geographic atrophy and photoreceptor cell death. METHODS: A combination of in vitro, ex vivo and in vivo models were used to test the neuroprotective potential of UA in the SI model. Functional assays (OCT, ERGs), cellular analysis (flow cytometry, qPCR) and fine confocal microscopy (immunohistochemistry, tandem selective autophagy reporters) helped address this question. RESULTS: UA alleviated neurodegeneration and preserved visual function in SI-treated mice. Simultaneously, we observed severe proteostasis defects upon SI damage induction, including autophagosome accumulation, that were resolved in animals that received UA. Treatment with UA restored autophagic flux and triggered PINK1/Parkin-dependent mitophagy, as previously reported in the literature. Autophagy blockage caused by SI was caused by severe lysosomal membrane permeabilization. While UA did not induce lysosomal biogenesis, it did restore upcycling of permeabilized lysosomes through lysophagy. Knockdown of the lysophagy adaptor SQSTM1/p62 abrogated viability rescue by UA in SI-treated cells, exacerbated lysosomal defects and inhibited lysophagy. CONCLUSIONS: Collectively, these data highlight a novel putative application of UA in the treatment of AMD whereby it bypasses lysosomal defects by promoting p62-dependent lysophagy to sustain proteostasis.


Asunto(s)
Cumarinas , Animales , Ratones , Cumarinas/farmacología , Autofagia/efectos de los fármacos , Autofagia/fisiología , Degeneración Macular/metabolismo , Degeneración Macular/patología , Retina/metabolismo , Retina/efectos de los fármacos , Retina/patología , Mitofagia/efectos de los fármacos , Mitofagia/fisiología , Proteína Sequestosoma-1/metabolismo , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Humanos , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Ratones Endogámicos C57BL , Yodatos/toxicidad
6.
Autophagy ; 20(7): 1684-1686, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38411192

RESUMEN

Loss of proteostasis and dysregulated mitochondrial function are part of the traditional hallmarks of aging, and in their last revision impaired macroautophagy and chronic inflammation are also included. Mitophagy is at the intersection of all these processes but whether it undergoes age-associated perturbations was not known. In our recent work, we performed a systematic and systemic analysis of mitolysosome levels in mice and found that, despite the already-known decrease in nonselective macroautophagy, mitophagy remains stable or increases upon aging in all tissues analyzed and is mediated by the PINK1-PRKN-dependent pathway. Further analyses revealed a concomitant increase in mtDNA leakage into the cytosol and activation of the CGAS-STING1 inflammation axis. Notably, both phenomena are also observed in primary fibroblasts from aged human donors. We hypothesized that mitophagy might be selectively upregulated during aging to improve mitochondrial fitness and reduce mtDNA-induced inflammation. Treatment with the mitophagy inducer urolithin A alleviates age-associated neurological decline, including improved synaptic connectivity, cognitive memory and visual function. Supporting our initial hypothesis, urolithin A reduces the levels of cytosolic mtDNA, CGAS-STING1 activation and neuroinflammation. Finally, using an in vitro model of mitochondrial membrane permeabilization we validated that PINK1-PRKN-mediated mitophagy is essential to resolve cytosolic mtDNA-triggered inflammation. These findings open up an integrative approach to tackle aging and increase healthspan via mitophagy induction.


Asunto(s)
Envejecimiento , Mitofagia , Enfermedades Neuroinflamatorias , Mitofagia/fisiología , Envejecimiento/patología , Envejecimiento/metabolismo , Humanos , Animales , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Proteínas de la Membrana/metabolismo , Proteínas Quinasas/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Ratones , Inflamación/patología , Inflamación/metabolismo
7.
Nat Commun ; 15(1): 830, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280852

RESUMEN

Macroautophagy decreases with age, and this change is considered a hallmark of the aging process. It remains unknown whether mitophagy, the essential selective autophagic degradation of mitochondria, also decreases with age. In our analysis of mitophagy in multiple organs in the mito-QC reporter mouse, mitophagy is either increased or unchanged in old versus young mice. Transcriptomic analysis shows marked upregulation of the type I interferon response in the retina of old mice, which correlates with increased levels of cytosolic mtDNA and activation of the cGAS/STING pathway. Crucially, these same alterations are replicated in primary human fibroblasts from elderly donors. In old mice, pharmacological induction of mitophagy with urolithin A attenuates cGAS/STING activation and ameliorates deterioration of neurological function. These findings point to mitophagy induction as a strategy to decrease age-associated inflammation and increase healthspan.


Asunto(s)
ADN Mitocondrial , Mitofagia , Humanos , Ratones , Animales , Anciano , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Inflamación/genética , Inflamación/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Envejecimiento/genética
8.
Trends Neurosci ; 46(12): 1067-1082, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37848361

RESUMEN

Lysosomes play crucial roles in various cellular processes - including endocytosis, phagocytosis, and autophagy - which are vital for maintaining retinal health. Moreover, these organelles serve as environmental sensors and act as central hubs for multiple signaling pathways. Through communication with other cellular components, such as mitochondria, lysosomes orchestrate the cytoprotective response essential for preserving cellular homeostasis. This coordination is particularly critical in the retina, given its high metabolic rate and susceptibility to photo-oxidative stress. Consequently, impaired lysosomal function and dysregulated communication between lysosomes and other organelles contribute significantly to the pathobiology of major retinal degenerative diseases. This review explores the pivotal role of lysosomes in retinal cells and their involvement in retinal degenerative diseases.


Asunto(s)
Lisosomas , Retina , Humanos , Lisosomas/metabolismo , Autofagia/fisiología , Mitocondrias/metabolismo , Endocitosis
9.
J Neuroinflammation ; 20(1): 207, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37691115

RESUMEN

Vascular endothelial function is challenged during cerebral ischemia and reperfusion. The endothelial responses are involved in inflammatory leukocyte attraction, adhesion and infiltration, blood-brain barrier leakage, and angiogenesis. This study investigated gene expression changes in brain endothelial cells after acute ischemic stroke using transcriptomics and translatomics. We isolated brain endothelial mRNA by: (i) translating ribosome affinity purification, enabling immunoprecipitation of brain endothelial ribosome-attached mRNA for translatome sequencing and (ii) isolating CD31+ endothelial cells by fluorescence-activating cell sorting for classical transcriptomic analysis. Both techniques revealed similar pathways regulated by ischemia but they showed specific differences in some transcripts derived from non-endothelial cells. We defined a gene set characterizing the endothelial response to acute stroke (24h) by selecting the differentially expressed genes common to both techniques, thus corresponding with the translatome and minimizing non-endothelial mRNA contamination. Enriched pathways were related to inflammation and immunoregulation, angiogenesis, extracellular matrix, oxidative stress, and lipid trafficking and storage. We validated, by flow cytometry and immunofluorescence, the protein expression of several genes encoding cell surface proteins. The inflammatory response was associated with the endothelial upregulation of genes related to lipid storage functions and we identified lipid droplet biogenesis in the endothelial cells after ischemia. The study reports a robust translatomic signature of brain endothelial cells after acute stroke and identifies enrichment in novel pathways involved in membrane signaling and lipid storage. Altogether these results highlight the endothelial contribution to the inflammatory response, and identify novel molecules that could be targets to improve vascular function after ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular Isquémico/genética , Transcriptoma , Encéfalo , Accidente Cerebrovascular/genética , Lípidos
10.
Prog Retin Eye Res ; 96: 101205, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37454969

RESUMEN

Mitochondrial function is key to support metabolism and homeostasis in the retina, an organ that has one of the highest metabolic rates body-wide and is constantly exposed to photooxidative damage and external stressors. Mitophagy is the selective autophagic degradation of mitochondria within lysosomes, and can be triggered by distinct stimuli such as mitochondrial damage or hypoxia. Here, we review the importance of mitophagy in retinal physiology and pathology. In the developing retina, mitophagy is essential for metabolic reprogramming and differentiation of retina ganglion cells (RGCs). In basal conditions, mitophagy acts as a quality control mechanism, maintaining a healthy mitochondrial pool to meet cellular demands. We summarize the different autophagy- and mitophagy-deficient mouse models described in the literature, and discuss the potential role of mitophagy dysregulation in retinal diseases such as glaucoma, diabetic retinopathy, retinitis pigmentosa, and age-related macular degeneration. Finally, we provide an overview of methods used to monitor mitophagy in vitro, ex vivo, and in vivo. This review highlights the important role of mitophagy in sustaining visual function, and its potential as a putative therapeutic target for retinal and other diseases.


Asunto(s)
Mitofagia , Retina , Ratones , Animales , Mitofagia/fisiología , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Autofagia , Mitocondrias/metabolismo , Homeostasis
11.
EMBO Rep ; 24(7): e56131, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37184882

RESUMEN

In addition to triggering humoral responses, conventional B cells have been described in vitro to cross-present exogenous antigens activating naïve CD8+ T cells. Nevertheless, the way B cells capture these exogenous antigens and the physiological roles of B cell-mediated cross-presentation remain poorly explored. Here, we show that B cells capture bacteria by trans-phagocytosis from previously infected dendritic cells (DC) when they are in close contact. Bacterial encounter "instructs" the B cells to acquire antigen cross-presentation abilities, in a process that involves autophagy. Bacteria-instructed B cells, henceforth referred to as BacB cells, rapidly degrade phagocytosed bacteria, process bacterial antigens and cross-prime naïve CD8+ T cells which differentiate into specific cytotoxic cells that efficiently control bacterial infections. Moreover, a proof-of-concept experiment shows that BacB cells that have captured bacteria expressing tumor antigens could be useful as novel cellular immunotherapies against cancer.


Asunto(s)
Linfocitos T CD8-positivos , Células Dendríticas , Presentación de Antígeno , Reactividad Cruzada , Antígenos Bacterianos
12.
Cell Death Differ ; 30(5): 1097-1154, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37100955

RESUMEN

Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.


Asunto(s)
Apoptosis , Caspasas , Animales , Humanos , Apoptosis/genética , Muerte Celular , Caspasas/genética , Caspasas/metabolismo , Carcinogénesis , Mamíferos/metabolismo
13.
Autophagy Rep ; 2(1)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37034386

RESUMEN

Autophagy is a catabolic self-degradative pathway that promotes the degradation and recycling of intracellular material through the lysosomal compartment. Although first believed to function in conditions of nutritional stress, autophagy is emerging as a critical cellular pathway, involved in a variety of physiological and pathophysiological processes. Autophagy dysregulation is associated with an increasing number of diseases, including ocular diseases. On one hand, mutations in autophagy-related genes have been linked to cataracts, glaucoma, and corneal dystrophy; on the other hand, alterations in autophagy and lysosomal pathways are a common finding in essentially all diseases of the eye. Moreover, LC3-associated phagocytosis, a form of non-canonical autophagy, is critical in promoting visual cycle function. This review collects the latest understanding of autophagy in the context of the eye. We will review and discuss the respective roles of autophagy in the physiology and/or pathophysiology of each of the ocular tissues, its diurnal/circadian variation, as well as its involvement in diseases of the eye.

14.
J Enzyme Inhib Med Chem ; 38(1): 2153841, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36637025

RESUMEN

SGK1 is a serine/threonine kinase involved in several neurodegenerative-related pathways such as apoptosis, neuroinflammation, ionic channel regulation, and autophagy, among others. Despite its potential role as a pharmacological target against this kind of diseases, there are no reported inhibitors able to cross the BBB so far, being a field yet to be explored. In this context, a structure-based virtual screening against this kinase was performed, pointing out the deazapurine moiety as an interesting and easy-to-derivatize scaffold. Moreover, these inhibitors are able to i) exert neuroprotection in an in vitro model of AD and ii) block mitophagy in a PRKN-independent manner, reinforcing the hypothesis of SGK1 inhibitors as neuroprotective chemical tools.


Asunto(s)
Fármacos Neuroprotectores , Proteínas Serina-Treonina Quinasas , Apoptosis , Fármacos Neuroprotectores/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores
15.
Autophagy ; 19(7): 1952-1981, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36622892

RESUMEN

Microglial phagocytosis of apoptotic debris prevents buildup damage of neighbor neurons and inflammatory responses. Whereas microglia are very competent phagocytes under physiological conditions, we report their dysfunction in mouse and preclinical monkey models of stroke (macaques and marmosets) by transient occlusion of the medial cerebral artery (tMCAo). By analyzing recently published bulk and single cell RNA sequencing databases, we show that the phagocytosis dysfunction was not explained by transcriptional changes. In contrast, we demonstrate that the impairment of both engulfment and degradation was related to energy depletion triggered by oxygen and nutrient deprivation (OND), which led to reduced process motility, lysosomal exhaustion, and the induction of a protective macroautophagy/autophagy response in microglia. Basal autophagy, in charge of removing and recycling intracellular elements, was critical to maintain microglial physiology, including survival and phagocytosis, as we determined both in vivo and in vitro using pharmacological and transgenic approaches. Notably, the autophagy inducer rapamycin partially prevented the phagocytosis impairment induced by tMCAo in vivo but not by OND in vitro, where it even had a detrimental effect on microglia, suggesting that modulating microglial autophagy to optimal levels may be a hard to achieve goal. Nonetheless, our results show that pharmacological interventions, acting directly on microglia or indirectly on the brain environment, have the potential to recover phagocytosis efficiency in the diseased brain. We propose that phagocytosis is a therapeutic target yet to be explored in stroke and other brain disorders and provide evidence that it can be modulated in vivo using rapamycin.Abbreviations: AIF1/IBA1: allograft inflammatory factor 1; AMBRA1: autophagy/beclin 1 regulator 1; ATG4B: autophagy related 4B, cysteine peptidase; ATP: adenosine triphosphate; BECN1: beclin 1, autophagy related; CASP3: caspase 3; CBF: cerebral blood flow; CCA: common carotid artery; CCR2: chemokine (C-C motif) receptor 2; CIR: cranial irradiation; Csf1r/v-fms: colony stimulating factor 1 receptor; CX3CR1: chemokine (C-X3-C motif) receptor 1; DAPI: 4',6-diamidino-2-phenylindole; DG: dentate gyrus; GO: Gene Ontology; HBSS: Hanks' balanced salt solution; HI: hypoxia-ischemia; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MCA: medial cerebral artery; MTOR: mechanistic target of rapamycin kinase; OND: oxygen and nutrient deprivation; Ph/A coupling: phagocytosis-apoptosis coupling; Ph capacity: phagocytic capacity; Ph index: phagocytic index; SQSTM1: sequestosome 1; RNA-Seq: RNA sequencing; TEM: transmission electron microscopy; tMCAo: transient medial cerebral artery occlusion; ULK1: unc-51 like kinase 1.


Asunto(s)
Autofagia , Accidente Cerebrovascular , Animales , Ratones , Autofagia/fisiología , Microglía/metabolismo , Beclina-1/metabolismo , Fagocitosis/genética , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/metabolismo , Oxígeno/farmacología , Sirolimus/farmacología
16.
Mol Neurobiol ; 60(2): 851-863, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36378469

RESUMEN

Astrocytes are key glial cells for the metabolic and functional support of the brain. Mitochondrial quality control (MQC), in particular the balance between mitophagy and mitochondrial biogenesis, is a major event for the maintenance of cellular homeostasis. Carbon monoxide (CO) is an endogenous gasotransmitter that inhibits cell death and inflammation by targeting mitochondria. It is well established that CO promotes cytoprotection by increasing mitochondrial population and metabolism (oxidative phosphorylation). Thus, it is hypothesized that CO-induced cytoprotection may also be mediated by the balance between mitophagy and mitochondrial biogenesis. Herein, the carbon monoxide releasing molecule-A1 (CORM-A1) was used in primary cultures of astrocytes to assess CO role on mitochondrial turnover. PINK1/Parkin-dependent mitophagy was stimulated by CORM-A1 following 1 h of treatment. While at 24 h after treatment, CORM-A1 increased mitochondrial population, which may indicate mitochondrial biogenesis. In fact, mitochondrial biogenesis was confirmed by the enhancement of PGC-1α expression that upregulates several mitochondrial transcription factors. Furthermore, inhibition of mitophagy by knocking down PINK1 expression reverted CO-induced mitochondrial biogenesis, indicating that mitochondrial turnover is dependent on modulation of mitophagy. Finally, CORM-A1 prevented astrocytic cell death induced by oxidative stress in a mitophagy-dependent manner. In fact, whenever PINK1 was knocked down, CORM-A1-induced cytoprotection was lost. In summary, CORM-A1 stimulates mitochondrial turnover, which in turn prevents astrocytic cell death. CO cytoprotection depends on increasing mitochondrial population and on eliminating dysfunctional mitochondria.


Asunto(s)
Monóxido de Carbono , Mitofagia , Monóxido de Carbono/farmacología , Monóxido de Carbono/metabolismo , Astrocitos/metabolismo , Biogénesis de Organelos , Estrés Oxidativo , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
17.
Autophagy ; 19(3): 784-804, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35875981

RESUMEN

Macroautophagy/autophagy is a key process in the maintenance of cellular homeostasis. The age-dependent decline in retinal autophagy has been associated with photoreceptor degeneration. Retinal dysfunction can also result from damage to the retinal pigment epithelium (RPE), as the RPE-retina constitutes an important metabolic ecosystem that must be finely tuned to preserve visual function. While studies of mice lacking essential autophagy genes have revealed a predisposition to retinal degeneration, the consequences of a moderate reduction in autophagy, similar to that which occurs during physiological aging, remain unclear. Here, we described a retinal phenotype consistent with accelerated aging in mice carrying a haploinsufficiency for Ambra1, a pro-autophagic gene. These mice showed protein aggregation in the retina and RPE, metabolic underperformance, and premature vision loss. Moreover, Ambra1+/gt mice were more prone to retinal degeneration after RPE stress. These findings indicate that autophagy provides crucial support to RPE-retinal metabolism and protects the retina against stress and physiological aging.Abbreviations : 4-HNE: 4-hydroxynonenal; AMBRA1: autophagy and beclin 1 regulator 1, AMD: age-related macular degeneration;; GCL: ganglion cell layer; GFAP: glial fibrillary acidic protein; GLUL: glutamine synthetase/glutamate-ammonia ligase; HCL: hierarchical clustering; INL: inner nuclear layer; IPL: inner plexiform layer; LC/GC-MS: liquid chromatography/gas chromatography-mass spectrometry; MA: middle-aged; MTDR: MitoTracker Deep Red; MFI: mean fluorescence intensity; NL: NH4Cl and leupeptin; Nqo: NAD(P)H quinone dehydrogenase; ONL: outer nuclear layer; OPL: outer plexiform layer; OP: oscillatory potentials; OXPHOS: oxidative phosphorylation; PCR: polymerase chain reaction; PRKC/PKCα: protein kinase C; POS: photoreceptor outer segment; RGC: retinal ganglion cells; RPE: retinal pigment epithelium; SI: sodium iodate; TCA: tricarboxylic acid.


Asunto(s)
Degeneración Retiniana , Ratones , Animales , Degeneración Retiniana/genética , Ecosistema , Haploinsuficiencia , Autofagia/genética , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
18.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36293534

RESUMEN

Mitophagy is the selective degradation of mitochondria by autophagy. It promotes the turnover of mitochondria and prevents the accumulation of dysfunctional mitochondria, which can lead to cellular degeneration. Mitophagy is known to be altered in several pathological conditions, especially in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). We recently demonstrated an increase in autophagy flux in lymphoblasts from ALS patients bearing a mutation in SOD1. Thus, the identification of mitophagy inhibitors may be a therapeutic option to recover mitochondrial homeostasis. Here, using a phenotypic mitophagy assay, we identified a new mitophagy inhibitor, the small molecule named IGS2.7 from the MBC library. Interestingly, the treatment of different cellular and in vivo models of ALS with mutations on SOD1 and TARDBP with this inhibitor restores autophagy to control levels. These results point mitophagy inhibitors, especially IGS2.7, to a new therapeutic approach for familial ALS patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Mitofagia , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Superóxido Dismutasa-1/genética , Mutación
19.
EMBO J ; 41(24): e111115, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36215693

RESUMEN

Mitochondria and peroxisomes are closely related metabolic organelles, both in terms of origin and in terms of function. Mitochondria and peroxisomes can also be turned over by autophagy, in processes termed mitophagy and pexophagy, respectively. However, despite their close relationship, it is not known if both organelles are turned over under similar conditions, and if so, how this might be coordinated molecularly. Here, we find that multiple selective autophagy pathways are activated upon iron chelation and show that mitophagy and pexophagy occur in a BNIP3L/NIX-dependent manner. We reveal that the outer mitochondrial membrane-anchored NIX protein, previously described as a mitophagy receptor, also independently localises to peroxisomes and drives pexophagy. We show this process happens in vivo, with mouse tissue that lacks NIX having a higher peroxisomal content. We further show that pexophagy is stimulated under the same physiological conditions that activate mitophagy, including cardiomyocyte and erythrocyte differentiation. Taken together, our work uncovers a dual role for NIX, not only in mitophagy but also in pexophagy, thus illustrating the interconnection between selective autophagy pathways.


Asunto(s)
Macroautofagia , Mitofagia , Ratones , Animales , Peroxisomas/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
20.
Nat Commun ; 13(1): 4220, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864098

RESUMEN

Chaperone-mediated autophagy activity, essential in the cellular defense against proteotoxicity, declines with age, and preventing this decline in experimental genetic models has proven beneficial. Here, we have identified the mechanism of action of selective chaperone-mediated autophagy activators previously developed by our group and have leveraged that information to generate orally bioavailable chaperone-mediated autophagy activators with favorable brain exposure. Chaperone-mediated autophagy activating molecules stabilize the interaction between retinoic acid receptor alpha - a known endogenous inhibitor of chaperone-mediated autophagy - and its co-repressor, nuclear receptor corepressor 1, resulting in changes of a discrete subset of the retinoic acid receptor alpha transcriptional program that leads to selective chaperone-mediated autophagy activation. Chaperone-mediated autophagy activators molecules activate this pathway in vivo and ameliorate retinal degeneration in a retinitis pigmentosa mouse model. Our findings reveal a mechanism for pharmacological targeting of chaperone-mediated autophagy activation and suggest a therapeutic strategy for retinal degeneration.


Asunto(s)
Autofagia Mediada por Chaperones , Degeneración Retiniana , Retinitis Pigmentosa , Animales , Autofagia , Proteínas Co-Represoras , Ratones , Receptor alfa de Ácido Retinoico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA