Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Food Prot ; 86(3): 100045, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36916552

RESUMEN

Surface water environments are inherently heterogenous, and little is known about variation in microbial water quality between locations. This study sought to understand how microbial water quality differs within and between Virginia ponds. Grab samples were collected twice per week from 30 sampling sites across nine Virginia ponds (n = 600). Samples (100 mL) were enumerated for total coliform (TC) and Escherichia coli (EC) levels, and physicochemical, weather, and environmental data were collected. Bayesian models of coregionalization were used to quantify the variance in TC and EC levels attributable to spatial (e.g., site, pond) versus nonspatial (e.g., date, pH) sources. Mixed-effects Bayesian regressions and conditional inference trees were used to characterize relationships between data and TC or EC levels. Analyses were performed separately for each pond with ≥3 sampling sites (5 intrapond) while one interpond model was developed using data from all sampling sites and all ponds. More variance in TC levels were attributable to spatial opposed to nonspatial sources for the interpond model (variance ratio [VR] = 1.55) while intrapond models were pond dependent (VR: 0.65-18.89). For EC levels, more variance was attributable to spatial sources in the interpond model (VR = 1.62), compared to all intrapond models (VR < 1.0) suggesting that more variance is attributable to nonspatial factors within individual ponds and spatial factors when multiple ponds are considered. Within each pond, TC and EC levels were spatially independent for sites 56-87 m apart, indicating that different sites within the same pond represent different water quality for risk management. Rainfall was positively and pH negatively associated with TC and EC levels in both inter- and intrapond models. For all other factors, the direction and strength of associations varied. Factors driving microbial dynamics in ponds appear to be pond-specific and differ depending on the spatial scale considered.


Asunto(s)
Riego Agrícola , Estanques , Estanques/microbiología , Teorema de Bayes , Bacterias , Calidad del Agua , Escherichia coli
2.
J Food Prot ; 83(5): 858-864, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31928419

RESUMEN

ABSTRACT: Understanding a food's ability to support the growth and/or survival of a pathogen throughout the supply chain is essential to minimizing large-scale contamination events. The purpose of this study was to examine the behavior (growth and/or survival) of Listeria monocytogenes on broccoli and cauliflower florets stored at different postharvest temperatures utilized along the supply chain. Broccoli and cauliflower samples were inoculated with L. monocytogenes at approximately 3 log CFU/g and stored at 23 ± 2, 12 ± 2, 4 ± 2, and -18 ± 2°C. Samples were evaluated for L. monocytogenes levels after 0, 0.167 (4 h), 1, 2, 3, and 4 days at 23 ± 2°C; 0, 0.167, 1, 2, 3, 4, 7, 10, and 14 days at 12 ± 2°C; 0, 0.167, 1, 2, 3, 4, 7, 10, 14, 21, and 28 days at 4 ± 2°C; and 0, 1, 7, 28, 56, 84, 112, 140, and 168 days at -18 ± 2°C. L. monocytogenes populations were determined by plating samples onto tryptic soy agar and modified Oxford agar supplemented with nalidixic acid. Broccoli and cauliflower supported the growth of L. monocytogenes at 23, 12, and 4°C, and higher growth rates were observed at higher temperatures. Populations of L. monocytogenes on broccoli and cauliflower samples significantly increased within 1 day at 23°C (by 1.6 and 2.0 log CFU/g, respectively) (P ≤ 0.05). At 12°C, populations of L. monocytogenes on broccoli and cauliflower samples significantly increased over 14 days by 1.4 and 1.9 log CFU/g, respectively (P ≤ 0.05). No significant difference over time was observed in L. monocytogenes populations on broccoli and cauliflower samples held under refrigeration until populations began to grow by day 10 in both commodities (P > 0.05). Under frozen storage (-18°C), populations of L. monocytogenes survived on broccoli and cauliflower at least up to 168 days. Storage of broccoli and cauliflower at lower temperatures can minimize L. monocytogenes growth potential; growth rates were lower at 4°C than at 12 and 23°C.


Asunto(s)
Brassica , Almacenamiento de Alimentos/métodos , Listeria monocytogenes , Brassica/microbiología , Recuento de Colonia Microbiana , Manipulación de Alimentos , Microbiología de Alimentos , Conservación de Alimentos , Listeria monocytogenes/crecimiento & desarrollo , Temperatura
3.
Front Microbiol ; 11: 557289, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488530

RESUMEN

Outbreaks of foodborne illnesses linked to fresh fruits and vegetables have been key drivers behind a wide breadth of research aiming to fill data gaps in our understanding of the total ecology of agricultural water sources such as ponds and wells and the relationship of this ecology to foodborne pathogens such as Salmonella enterica and Listeria monocytogenes. Both S. enterica and L. monocytogenes can persist in irrigation water and have been linked to produce contamination events. Data describing the abundance of these organisms in specific agricultural water sources are valuable to guide water treatment measures. Here, we profiled the culture independent water microbiota of four farm ponds and wells correlated with microbiological recovery of S. enterica (prevalence: pond, 19.4%; well, 3.3%), L. monocytogenes (pond, 27.1%; well, 4.2%) and fecal indicator testing. Correlation between abiotic factors, including water parameters (temperature, pH, conductivity, dissolved oxygen percentage, oxidation reduction potential, and turbidity) and weather (temperature and rainfall), and foodborne pathogens were also evaluated. Although abiotic factors did not correlate with recovery of S. enterica or L. monocytogenes (p > 0.05), fecal indicators were positively correlated with incidence of S. enterica in well water. Bacterial taxa such as Sphingomonadaceae and Hymenobacter were positively correlated with the prevalence and population of S. enterica, and recovery of L. monocytogenes was positively correlated with the abundance of Rhizobacter and Comamonadaceae (p < 0.03). These data will support evolving mitigation strategies to reduce the risk of produce contamination by foodborne pathogens through irrigation.

4.
Am J Infect Control ; 48(7): 846-848, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31836207

RESUMEN

The use of prewetted disinfectant towelettes in health care settings proves challenging because they may dry quickly, reducing disinfection. This study examined the drying time of various commercial disinfectant towelettes and the efficacy of these towelettes over time to eliminate Staphylococcus aureus from glass surfaces. This study confirms that these disinfectants dry quickly. Further disinfection after drying time on glass is minimal, but dependent on the type of disinfectant.


Asunto(s)
Desinfectantes , Infecciones Estafilocócicas , Desecación , Desinfectantes/farmacología , Desinfección , Humanos , Staphylococcus aureus
5.
J Food Prot ; 82(9): 1484-1495, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31411508

RESUMEN

In May 2016, labeling of certain nonintact mechanically tenderized beef (MTB) products was mandated in the United States. MTB products should be handled differently by the consumer because pathogens can be transferred from the exterior to the interior of the meat during the tenderization process. Without labeling, it is difficult to visually distinguish between some intact beef and MTB products, which is a concern because MTB products require higher internal cooking temperatures for safety. An exploratory study was conducted to understand consumer understanding of MTB products and consumer responses to the new label. Thirteen focus groups were convened in rural and urban settings across Virginia and North Carolina between December 2015 and May 2016. Sessions were audiorecorded, transcribed verbatim, and analyzed through constant-comparison thematic analysis. Although MTB products were commonly bought, prepared, and consumed, consumer awareness of MTB products and the MTB process was limited. Generally, the label confused participants, and they did not understand the message. Specifically, terminology such as "blade tenderized" and "mechanically tenderized" were preferred over the term "needle tenderized" on labels. Once explained, many individuals wanted more information and better messaging. Through a multiprong approach, other messaging methods (e.g., in stores, through technology, and with certifications) were highly valued by consumers and may result in increased message clarity. Ultimately, the intrinsic and extrinsic properties of the beef rather than the MTB product continued to be the primary guide for purchasing and preparation. This study is the first to be conducted regarding American perceptions of MTB products. An understanding of consumer awareness of MTB products and labels is needed to develop targeted risk messaging communication tools.


Asunto(s)
Comportamiento del Consumidor , Grupos Focales , Manipulación de Alimentos , Etiquetado de Alimentos , Microbiología de Alimentos , Carne Roja , Animales , Bovinos , Recuento de Colonia Microbiana , Comportamiento del Consumidor/estadística & datos numéricos , Grupos Focales/estadística & datos numéricos , Manipulación de Alimentos/métodos , Etiquetado de Alimentos/estadística & datos numéricos , Humanos , North Carolina , Carne Roja/microbiología , Estados Unidos , Virginia
6.
Front Microbiol ; 10: 710, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024491

RESUMEN

Contamination of romaine lettuce with human pathogens, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs) occurs during production. Post-harvest interventions are emplaced to mitigate pathogens, but could also mitigate ARB and ARGs on vegetables. The objective of this research was to determine changes to lettuce phyllosphere microbiota, inoculated ARB, and the resistome (profile of ARGs) following washing with a sanitizer, gamma irradiation, and cold storage. To simulate potential sources of pre-harvest contamination, romaine lettuce leaves were inoculated with compost slurry containing antibiotic-resistant strains of pathogenic (Escherichia coli O157:H7) and representative of spoilage bacteria (Pseudomonas aeruginosa). Various combinations of washing with sodium hypochlorite (50 ppm free chlorine), packaging under modified atmosphere (98% nitrogen), irradiating (1.0 kGy) and storing at 4°C for 1 day versus 14 days were compared. Effects of post-harvest treatments on the resistome were profiled by shotgun metagenomic sequencing. Bacterial 16S rRNA gene amplicon sequencing was performed to determine changes to the phyllosphere microbiota. Survival and regrowth of inoculated ARB were evaluated by enumeration on selective media. Washing lettuce in water containing sanitizer was associated with reduced abundance of ARG classes that confer resistance to glycopeptides, ß-lactams, phenicols, and sulfonamides (Wilcoxon, p < 0.05). Washing followed by irradiation resulted in a different resistome chiefly due to reductions in multidrug, triclosan, polymyxin, ß-lactam, and quinolone ARG classes (Wilcoxon, p < 0.05). Irradiation followed by storage at 4°C for 14 days led to distinct changes to the ß-diversity of the host bacteria of ARGs compared to 1 day after treatment (ANOSIM, R = 0.331; p = 0.003). Storage of washed and irradiated lettuce at 4°C for 14 days increased the relative abundance of Pseudomonadaceae and Carnobacteriaceae (Wilcoxon, p < 0.05), two groups whose presence correlated with detection of 10 ARG classes on the lettuce phyllosphere (p < 0.05). Irradiation resulted in a significant reduction (∼3.5 log CFU/g) of inoculated strains of E. coli O157:H7 and P. aeruginosa (ANOVA, p < 0.05). Results indicate that washing, irradiation and storage of modified atmosphere packaged lettuce at 4°C are effective strategies to reduce antibiotic-resistant E. coli O157:H7 and P. aeruginosa and relative abundance of various ARG classes.

7.
Int J Food Microbiol ; 291: 25-34, 2019 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-30445282

RESUMEN

Strategies to mitigate antibiotic-resistant bacteria (ARB), including human pathogens, on raw vegetables are needed to reduce incidence of resistant infections. The objective of this research was to determine the effectiveness of standard post-harvest interventions, sanitizer washing and cold storage, to reduce ARB, including antibiotic resistant strains of the human pathogen E. coli O15:H7 and a common spoilage bacterium Pseudomonas, on raw carrots. To provide a background inoculum representing potential pre-harvest carryover of ARB, carrots were dip-inoculated in dairy cow manure compost slurry and further inoculated with known ARB. Inoculated carrots were washed with one of three treatments: sodium hypochlorite (50 ppm free chlorine), peroxyacetic acid (40 ppm peroxyacetic acid; 11.2% hydrogen peroxide), tap water (no sanitizer), or no washing (control). Washed carrots were air dried, packaged and stored at 10 °C for 7d or 2 °C for up to 60 d. Enumeration was performed using total heterotrophic plate counts (HPC), HPCs on antibiotic-containing media ("ARBs"), E. coli O157:H7, and Pseudomonas sp. immediately after washing (0 d) and after 7 d of storage. In addition to the cultured bacteria, changes to the surficial carrot microbiota were profiled by sequencing bacterial 16S rRNA gene amplicons to determine the effect of sanitizer wash, storage temperature, and time of storage (0, 1, 7, 14 and 60 d). Storage temperature, addition of a sanitizer during wash, and duration of storage significantly affected the bacterial microbiota (Wilcoxon, p < 0.05). Inclusion of either sanitizer in the wash water significantly reduced the log CFU/g of E. coli O157:H7 and Pseudomonas sp., as well as HPCs enumerated on cefotaxime- (10 µg/ml), sulfamethoxazole- (100 µg/ml), or tetracycline (3 µg/ml) supplemented media compared to the unwashed control (ANOVA, p < 0.05). However, no significant reductions to bacteria resistant to vancomycin or clindamycin occurred after washing and storage. Members of the Proteobactetria, Firmicutes, Actinobacteria, Planctomycetes, and Acidobacteria comprised the bacterial carrot microbiota. The diversity of the carrot microbiota was significantly affected by the temperature of storage and by extended storage (60 d), when spoilage began to occur. There were no significant differences to the relative abundance of bacterial groups associated with the type of sanitizer used for washing. Results of this study indicate that inclusion of a sanitizer in wash water, followed by storage at 2 °C, might be an effective strategy to prevent re-growth of pathogenic E. coli O157:H7 and reduce levels of bacteria resistant to certain antibiotics on carrots.


Asunto(s)
Bacterias/efectos de los fármacos , Daucus carota/microbiología , Desinfectantes/farmacología , Desinfección/métodos , Manipulación de Alimentos/métodos , Microbiología de Alimentos , Antibacterianos/farmacología , Bacterias/genética , Recuento de Colonia Microbiana , Farmacorresistencia Microbiana/efectos de los fármacos , Manipulación de Alimentos/normas , Viabilidad Microbiana/efectos de los fármacos , Ácido Peracético/farmacología , ARN Ribosómico 16S/genética , Hipoclorito de Sodio/farmacología , Agua/farmacología
8.
Am J Infect Control ; 47(4): 465-467, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30449453

RESUMEN

Effective disinfection in healthcare facilities prevents healthcare-associated infections. This study evaluated the ability of Environmental Protection Agency-approved disinfectants (quaternary ammonium compound, QAC; sodium hypochlorite, and hydrogen peroxide) applied with 3 wiping substrates (microfiber, nonwoven, and cotton) to remove Staphylococcus aureus from Formica surfaces. All treatments reduced S aureus on Formica squares with the exception of QAC applied with cotton and QAC, nondisinfectant, and control applied with a nonwoven cloth. Sodium hypochlorite or hydrogen peroxide applied with cotton or microfiber, respectively, may be the best choice for disinfection of Formica surfaces in healthcare settings.


Asunto(s)
Desinfectantes/farmacología , Desinfección/métodos , Fómites/microbiología , Staphylococcus aureus/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Compuestos de Amonio Cuaternario/farmacología , Hipoclorito de Sodio/farmacología
9.
J Food Saf ; 38(4): e12471, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30197459

RESUMEN

Cetylpyridinium chloride (CPC) solutions (0, 0.5, or 1.0%) were applied to cantaloupe ("Athena" and "Hale's Best Jumbo" cultivars) rind plugs, either before or after inoculation with a broth culture of Salmonella Michigan (109 CFU/mL) and held at 37°C for 1 or 24 hr. Rind plugs were diluted, shaken, and sonicated, and solutions were enumerated. Texture quality and color were evaluated over 14 days storage at 4°C after 0 and 1% CPC spray applications. A 0.5 or 1.0% (vol/vol) application of CPC after Salmonella reduced the pathogen levels between 2.34 log CFU/mL and 5.16 log CFU/mL in comparison to the control (p < .01). No differences were observed in the firmness and color of 1% CPC treated cantaloupes. Salmonella concentrations on cantaloupes, treated with 1.0% CPC, were lower after 1 hr storage as compared to 24 hr. And, Salmonella on "Athena" surfaces were more susceptible to CPC spray treatments than on "Hale's Best Jumbo." PRACTICAL APPLICATIONS: Cetylpyridinium chloride (CPC) is the active ingredient of some antiseptic oral mouth rinses, and has a broad antimicrobial spectrum with a rapid bactericidal effect on gram-positive pathogens. The spray application of CPC solutions to cantaloupe may reduce the level of Salmonella surface contamination during production from irrigation water and manure fertilizers and, during food processing by contaminated equipment and food handlers. Since the surfaces of cantaloupes are highly rough or irregular, bacteria can easily attach to these surfaces and become difficult to remove. Appropriate postharvest washing and sanitizing procedures are needed that can help control Salmonella and other pathogens on melons, especially on cantaloupes with nested surfaces. A direct surface spray application of CPC may be an alternative antimicrobial postharvest treatment to reduce pathogen contamination of cantaloupe melons, while providing an alternative to chlorine-based solutions.

10.
Foodborne Pathog Dis ; 15(9): 548-553, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30010397

RESUMEN

Salmonella serotypes linked to tomato-associated outbreaks were evaluated for survival in soil and water over a 40-day period. Salmonella enterica serotypes Anatum, Baildon, Braenderup, Montevideo, Newport, and Javiana were inoculated separately into sterile soil and water, followed by plating onto TSAYE and XLT4 at 10-day intervals. Biofilm production by Salmonella serotypes was measured on both quartz particles (soil surrogate) and glass coverslips, and was evaluated using a crystal violet dye assay. Salmonella populations in soil and water over 40 days indicated no significant differences between Salmonella serotypes tested (p > 0.05). Over a 40-day period, there was a 1.84 ± 0.22 log CFU/g and 1.56 ± 0.54 CFU/mL decrease in populations of Salmonella in soil and water, respectively. Enumeration indicated that Salmonella population fluctuated in water but decreased linearly in soil. All serotypes tested produced the "red dry and rough" morphotype on Congo Red agar. Biofilm produced by all the Salmonella serotypes tested was significantly different on quartz particles than on glass coverslips (p < 0.0001), indicating that material and surface characteristics could affect biofilm development. The ability of Salmonella serotypes to persist in soil or water and attach to abiotic surfaces through biofilm formation affirms that contact surfaces, soil, water, and sediment should be considered as possible sources of cross-contamination in the farm environment.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Contaminación de Alimentos , Salmonella enterica/crecimiento & desarrollo , Microbiología del Suelo , Solanum lycopersicum/microbiología , Microbiología del Agua , Adhesión Bacteriana , Brotes de Enfermedades , Microbiología de Alimentos , Enfermedades Transmitidas por los Alimentos/microbiología , Serogrupo , Temperatura , Factores de Tiempo
11.
J Food Prot ; 81(7): 1063-1067, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29877732

RESUMEN

A multiyear survey of 31 ready-to-eat (RTE) food processing plants in the United States was conducted to determine the incidence of Listeria spp. in various RTE production environments. Samples were collected from 22 RTE plants regulated by the U.S. Department of Agriculture's Food Safety and Inspection Service (FSIS) and from 9 RTE food plants regulated by the U.S. Department of Health and Human Services' Food and Drug Administration (FDA). Only nonfood contact surfaces in the RTE manufacturing areas with exposed RTE product were sampled. Each sample was individually analyzed for the presence of Listeria spp. by using a PCR-based rapid assay. In total, 4,829 samples were collected from various locations, including freezers, equipment framework, floors, walls, wall-floor junctures, drains, floor mats, doors, and cleaning tools. Nine (29%) of the facilities had zero samples positive for Listeria spp. in the production environment, whereas 22 (71%) had one or more samples positive for Listeria spp. The total incidence of Listeria spp. in all RTE food plants was 4.5%. The positive rate in plants regulated by the FSIS ranged from 0 to 9.7%, whereas the positive rate in plants regulated by the FDA ranged from 1.2 to 36%.


Asunto(s)
Contaminación de Alimentos/análisis , Industria de Procesamiento de Alimentos/normas , Listeria , Manipulación de Alimentos , Humanos , Incidencia , Listeria/aislamiento & purificación , Estados Unidos , United States Food and Drug Administration
12.
Food Sci Nutr ; 6(2): 373-380, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29564104

RESUMEN

Since the surfaces of cantaloupes are highly rough or irregular, bacteria can easily attach and become difficult to remove. Appropriate postharvest washing and sanitizing procedures can help control Salmonella and other pathogens on cantaloupe or other melons during postharvest operations. Delmopinol hydrochloride (delmopinol) is a cationic surfactant that is effective for treating and preventing gingivitis and periodontitis. The application of delmopinol to two cantaloupe cultivars was evaluated for reducing the level of inoculated Salmonella. Athena and Hale's Best Jumbo (HBJ) cantaloupe rind plugs (2.5 cm. dia.) were inoculated with nalidixic acid-resistant Salmonella Michigan (approx. 1.0 × 109 CFU/ml). After 15 min, rind plugs were sprayed with 10 ml of a delmopinol spray solution (0% or 1.0% vol/vol) and held at 35°C for 1 hr or 24 hr. Rind plugs were diluted with Butterfield's phosphate buffer, shaken and sonicated, and solutions were enumerated on 50 ppm nalidixic acid-tryptic soy agar. The texture quality and color of additional cantaloupes were evaluated, after 1% delmopinol spray treatment, over 14-day storage at 4°C. A 1.0% application of delmopinol after 1 hr reduced Salmonella concentration by ~3.1 log CFU/ml for both "HBJ" skin rind plugs and "Athena" stem scar rind plugs in comparison to the control (p < .05). No differences were observed in the texture and color (L*, a*, b* values) of 1% delmopinol-treated cantaloupes as compared to control. Storage of cantaloupes treated with 1.0% delmopinol solution for 1 hr had a greater effect on reducing concentration of Salmonella compared to 24-hr treatment. A surface spray application of 1% delmopinol on cantaloupes could be an alternative antimicrobial postharvest treatment that could make surface bacteria more susceptible to sanitizers or physical removal.

13.
Food Sci Nutr ; 5(6): 1130-1138, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29188040

RESUMEN

Peanut skin extract (PSE) and grape seed extract (GSE) are derived from waste products in the wine and peanut industries, respectively. Both have high concentrations of polyphenols, known to possess antioxidant and antimicrobial properties. PSE primarily contains "A-type" procyanidins, while GSE primarily contains "B-type" procyanidins. These differ structurally, but are both isomers of epicatechin dimers. The objective of this study was to evaluate the antimicrobial effects of PSE containing A-type procyanidins and GSE containing B-type procyanidins against select foodborne pathogens (Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium). The minimum inhibitory concentration (MIC) of the two extracts on L. monocytogenes, E. coli O157:H7, and S. Typhimurium was determined using the pour plate method. GSE had a significantly lower MIC (p ≤ .05) than PSE for L. monocytogenes (GSE = 60.6 ppm, PSE > 68.2 ppm) and S. Typhimurium (GSE = 45.7 ppm, PSE = 60.6 ppm), but no difference in inhibition of E. coli O157:H7. Since GSE contributed to greater inhibition, GSE extract was fractionated into monomer-rich (consisting primarily of catechins, epicatechins, and epicatechin gallates) and oligomer-rich (consisting of dimers, trimers, tetramers, up to decamers) components. Growth curves of all three pathogens in the presence of full extract, monomer and oligomer fractions were compared separately. None of the extracts inhibited S. Typhimurium growth. Generally, the extract containing greater oligomer components inhibited growth of L. monocytogenes and E. coli O157:H7 when compared to the control. Results indicate that an extract with type B procyanidins higher in oligomers may have greater antimicrobial properties.

14.
Food Sci Nutr ; 5(3): 497-503, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28572934

RESUMEN

Chili peppers (Capsicum spp.) may possess antibacterial properties and have potential to be used in foods as antimicrobial. The complete chili pepper extract should be evaluated to determine which compounds are responsible for the antimicrobial activity. Extraction of compounds from the pepper is completed using a solvent. The type of solvent used for extraction influences which compounds are isolated, therefore the best extraction method needs to be determined. The purpose of this study was to identify which solvent is most successful at extracting unknown antibacterial compounds from jalapeño peppers. Fresh jalapeño peppers were chopped, weighed, and blended with a solvent (sterilized hot water, 70% methanol, 95% methanol, 70% ethanol, or 95% ethanol) at a 1:1 ratio (g/g) until the mixture was homogenized, followed by shaking for 15 min. The slurry was centrifuged; supernatant was removed and used for antibacterial testing against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica. The diameter of growth inhibition was measured and statistically evaluated using ANOVA to determine the extract with the greatest antimicrobial activity. Solvents were tested alone as a control. There was greater bacterial inhibition from extracts created with methanol and ethanol than hot water. Listeria monocytogenes was significantly more susceptible to the extracts than E. coli or Salmonella isolates. Each solvent extract was then analyzed using high-performance liquid chromatography (HPLC) and fractions (A-G) were collected and used for subsequent disk diffusion analysis against L. monocytogenes. Fractions E and F (eluded between 20 and 30 min) exhibited the most antibacterial activity. There were no differences between solvents used (p = .05). Further investigation into specific compounds within these extracts will be completed in the future.

15.
Food Sci Nutr ; 5(3): 730-738, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28572963

RESUMEN

Capsicum annuum fruits have been investigated for antimicrobial activity in a number of studies. Capsaicin or other cinnamic acid pathway intermediates are often suggested to be the antimicrobial component, however there are conflicting results. No research has specifically fractionated jalapeño pepper (Capsicum annuum var. annuum) extract to isolate and identify compound(s) responsible for inhibition. In this study, fractions were collected from jalapeño pepper extracts using reverse-phase HPLC and tested for antibacterial activity using the disk diffusion method. Following initial fractionation, two fractions (E and F) displayed antibacterial activity against all three pathogens (p > .05). Commercial standards were screened to determine when they elude and it was found that capsaicin elutes at the same time as fraction E. Fractions E and F were subject to further HPLC fractionation and antibacterial analysis using two methods. The only fraction to display clear inhibition using both was fraction E1, inhibiting the growth of L. monocytogenes. Fraction E1 was analyzed using HPLC-MS. The resulting mass spectra revealed fraction E1 contained compounds belonging to a group of C. annuum-specific compounds known as capsianosides. Limited research is available on antibacterial activity of capsianosides, and a pure commercial standard is not available. In order to confirm the potential antimicrobial activity of the compound(s) isolated, methods need to be developed to isolate and purify capsianosides specifically from jalapeño peppers.

16.
Int J Food Microbiol ; 243: 90-95, 2017 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-28038335

RESUMEN

The presence of dust is ubiquitous in the produce growing environment and its deposition on edible crops could occur. The potential of wind-distributed soil particulate to serve as a vehicle for S. Newport transfer to tomato blossoms and consequently, to fruits, was explored. Blossoms were challenged with previously autoclaved soil containing S. Newport (9.39log CFU/g) by brushing and airborne transfer. One hundred percent of blossoms brushed with S. Newport-contaminated soil tested positive for presence of the pathogen one week after contact (P<0.0001). Compressed air was used to simulate wind currents and direct soil particulates towards blossoms. Airborne soil particulates resulted in contamination of 29% of the blossoms with S. Newport one week after contact. Biophotonic imaging of blossoms post-contact with bioluminescent S. Newport-contaminated airborne soil particulates revealed transfer of the pathogen on petal, stamen and pedicel structures. Both fruits and calyxes that developed from blossoms contaminated with airborne soil particulates were positive for presence of S. Newport in both fruit (66.6%) and calyx (77.7%). Presence of S. Newport in surface-sterilized fruit and calyx tissue tested indicated internalization of the pathogen. These results show that airborne soil particulates could serve as a vehicle for Salmonella. Hence, Salmonella contaminated dust and soil particulate dispersion could contribute to pathogen contamination of fruit, indicating an omnipresent yet relatively unexplored contamination route.


Asunto(s)
Flores/microbiología , Contaminación de Alimentos/análisis , Frutas/microbiología , Material Particulado/análisis , Salmonella/aislamiento & purificación , Solanum lycopersicum/microbiología , Productos Agrícolas/microbiología , Suelo , Microbiología del Suelo
17.
J Food Prot ; 77(2): 320-4, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24490928

RESUMEN

Over the past decade, the Eastern Shore of Virginia (ESV) has been implicated in at least four outbreaks of salmonellosis associated with tomato, all originating from the same serovar, Salmonella enterica serovar Newport. In addition to Salmonella Newport contamination, the devastating plant disease bacterial wilt, caused by the phytopathogen Ralstonia solanacearum, threatens the sustainability of ESV tomato production. Bacterial wilt is present in most ESV tomato fields and causes devastating yield losses each year. Although the connection between bacterial wilt and tomato-related salmonellosis outbreaks in ESV is of interest, the relationship between the two pathogens has never been investigated. In this study, tomato plants were root dip inoculated with one of four treatments: (i) 8 log CFU of Salmonella Newport per ml, (ii) 5 log CFU of R. solanacearum per ml, (iii) a coinoculation of 8 log CFU of Salmonella Newport per ml plus 5 log CFU of R. solanacearum per ml, and (iv) sterile water as control. Leaf, stem, and fruit samples were collected at the early-green-fruit stage, and S. enterica contamination in the internal tissues was detected. S. enterica was recovered in 1.4 and 2.9% of leaf samples from plants inoculated with Salmonella Newport only and from plants coinoculated with Salmonella Newport plus R. solanacearum, respectively. S. enterica was recovered from 1.7 and 3.5% of fruit samples from plants inoculated with Salmonella Newport only and from plants coinoculated with Salmonella Newport plus R. solanacearum, respectively. There were significantly more stem samples from plants coinoculated with Salmonella Newport plus R. solanacearum that were positive for S. enterica (18.6%) than stem samples collected from plants inoculated with Salmonella Newport only (5.7%). Results suggested that R. solanacearum could influence S. enterica survival and transportation throughout the internal tissues of tomato plants.


Asunto(s)
Antibiosis , Contaminación de Alimentos/análisis , Ralstonia solanacearum/fisiología , Salmonella enterica/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Frutas/microbiología , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Salmonella enterica/fisiología
18.
J Food Prot ; 76(11): 1989-93, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24215708

RESUMEN

As produce consumption has increased, so have foodborne disease outbreaks associated with fresh produce. Little research has addressed food safety practices used on small to medium-sized farms selling locally or in farmers markets. This study evaluated current food safety practices used by farmers on small to medium-sized farms and managers of farmers markets in Georgia, Virginia, and South Carolina based on responses to surveys. Surveys were developed, pretested, and revised before implementation with target audiences and were implemented via mail and the Web to maximize participation, with reminders sent to nonrespondents. Data were collected from 226 farmers and 45 market managers. Frequencies and percentages were calculated for all response variables. Responses from farmers indicated that more than 56% of them use manures. Of those who use manures, 34% use raw or mixtures of raw and composted manure, and over 26% wait fewer than 90 days between application of raw manure and harvest. Over 27% use water sources that have not been tested for safety for irrigation, and 16% use such water sources for washing produce. Over 43% do not sanitize surfaces that touch produce at the farm. Only 33% of farmers always clean transport containers between uses. Responses from market managers indicated that over 42% have no food safety standards in place for the market. Only 2 to 11% ask farmers specific questions about conditions on the farm that could affect product safety. Less than 25% of managers sanitize market surfaces. Only 11% always clean market containers between uses. Over 75% of markets offer no sanitation training to workers or vendors. While farmers and market managers are using many good practices, the results indicate that some practices being used may put consumers at risk of foodborne illness. Consequently, there is a need for training for both farmers and market managers.


Asunto(s)
Agricultura/métodos , Contaminación de Alimentos/prevención & control , Inocuidad de los Alimentos/métodos , Verduras/microbiología , Agricultura/normas , Comercio , Recolección de Datos , Enfermedades Transmitidas por los Alimentos/epidemiología , Enfermedades Transmitidas por los Alimentos/prevención & control , Georgia , Humanos , Higiene , Gestión de Riesgos , Saneamiento , South Carolina , Virginia
19.
J Food Prot ; 76(2): 272-82, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23433375

RESUMEN

Ready-to-eat (RTE) deli meats are considered a food at high risk for causing foodborne illness. Deli meats are listed as the highest risk RTE food vehicle for Listeria monocytogenes. Cross-contamination in the retail deli market may contribute to spread of pathogens to deli meats. Understanding potential cross-contamination pathways is essential for reducing the risk of contaminating various products. The objective of this study was to track cross-contamination pathways through a mock retail deli market using an abiotic surrogate, GloGerm, to visually represent how pathogens may spread through the deli environment via direct contact with food surfaces. Six contamination origination sites (slicer blade, meat chub, floor drain, preparation table, employee's glove, and employee's hands) were evaluated separately. Each site was inoculated with 20 ml of GloGerm, and a series of standard deli operations were completed (approximately 10 min of work). Photographs were then taken under UV illumination to visualize spread of GloGerm throughout the deli. A sensory panel evaluated the levels of contamination on the resulting contaminated surfaces. Five of the six contamination origination sites were associated with transfer of GloGerm to the deli case door handle, slicer blade, meat chub, preparation table, and the employee's gloves. Additional locations became contaminated (i.e., deli case shelf, prep table sink, and glove box), but this contamination was not consistent across all trials. Contamination did not spread from the floor drain to any food contact surfaces. The findings of this study reinforce the need for consistent equipment cleaning and food safety practices among deli workers to minimize cross-contamination.


Asunto(s)
Contaminación de Equipos , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Manipulación de Alimentos/métodos , Productos de la Carne/microbiología , Seguridad de Productos para el Consumidor , Comida Rápida/microbiología , Microbiología de Alimentos , Guantes Protectores , Humanos
20.
J Food Sci ; 77(4): M242-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22515250

RESUMEN

UNLABELLED: Proanthocyanidins were extracted from peanut skins and investigated for their antimicrobial activity against Saccharomyces cerevisiae, Zygosaccharomyces bailii, and Zygosaccharomyces bisporus in traditional growth media (Sabouraud Dextrose and Maltose broth) and a simulated apple juice beverage. Peanut skins extracts (PSE) were prepared through a multisolvent extraction procedure. The PSE extended the lag phase growth of the 3 yeasts studied at a concentration of 1 mg/mL and at 10 mg/mL yeast growth was totally inhibited for 120 h. PSE was fractionated by normal phase high performance liquid chromatography and the active components/fractions were determined. Compounds present in the fractions were identified by liquid chromatography-mass spectrometry to determine the compounds responsible for inhibition. Fractions consisting mostly of A-type proanthocyanidin dimers, trimers, and tetramers showed the highest percent inhibition toward the yeasts tested in this study. Both optical density (OD) and standard enumeration plating methods were performed in this study. The OD method led to an overestimation of the inhibitory effects of PSE, the 2 methods agreed in respect to treatment effects but not the severity of the inhibition. PRACTICAL APPLICATION: There is a growing consumer demand for "fresh like" products containing reduced amounts of chemical preservatives without compromising food safety and quality. Therefore, the goal of this study was to determine if an extract of peanut skins containing flavonoid rich compounds could function as a natural antimicrobial in a model beverage system. Proteins were removed through the process of producing the peanut skin extract, thus it is unlikely to contain peanut allergens. The antimicrobial compounds mentioned in this study were successfully integrated into a model beverage system, and were found to have antimicrobial effect. However, the incorporation of these compounds would likely lead to negative sensory attributes at the concentration needed to achieve an appreciable antimicrobial effect alone.


Asunto(s)
Antiinfecciosos/farmacología , Arachis/química , Conservantes de Alimentos/farmacología , Epidermis de la Planta/química , Extractos Vegetales/farmacología , Proantocianidinas/farmacología , Levaduras/efectos de los fármacos , Antiinfecciosos/análisis , Antiinfecciosos/economía , Antiinfecciosos/aislamiento & purificación , Bebidas/microbiología , Cromatografía Líquida de Alta Presión , Recuento de Colonia Microbiana , Conservantes de Alimentos/análisis , Conservantes de Alimentos/economía , Conservantes de Alimentos/aislamiento & purificación , Industria de Procesamiento de Alimentos/economía , Frutas/química , Frutas/microbiología , Residuos Industriales/análisis , Residuos Industriales/economía , Malus/química , Malus/microbiología , Espectrometría de Masas , Peso Molecular , Nefelometría y Turbidimetría , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Proantocianidinas/análisis , Proantocianidinas/química , Proantocianidinas/aislamiento & purificación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Semillas/química , Levaduras/crecimiento & desarrollo , Zygosaccharomyces/efectos de los fármacos , Zygosaccharomyces/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA