Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Front Immunol ; 15: 1434291, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39257574

RESUMEN

Monitoring the seroprevalence of SARS-CoV-2 in children and adolescents can provide valuable information for effective SARS-CoV-2 surveillance, and thus guide vaccination strategies. In this study, we quantified antibodies against the spike S1 domains of several SARS-CoV-2 variants (wild-type, Alpha, Delta, and Omicron variants) as well as endemic human coronaviruses (HCoVs) in 1,309 children and adolescents screened between December 2020 and March 2023. Their antibody binding profiles were compared with those of 22 pre-pandemic samples from children and adolescents using an in-house Luminex®-based Corona Array (CA). The primary objectives of this study were to (i) monitor SARS-CoV-2-specific antibodies in children and adolescents, (ii) evaluate whether the S1-specific antibody response can identify the infecting variant of concern (VoC), (iii) estimate the prevalence of silent infections, and (iv) test whether vaccination or infection with SARS-CoV-2 induce HCoV cross-reactive antibodies. Both SARS-CoV-2 infection and vaccination induced a robust antibody response against the S1 domain of WT and VoCs in children and adolescents. Antibodies specific for the S1 domain were able to distinguish between SARS-CoV-2 VoCs in infected children. The serologically identified VoC was typically the predominant VoC at the time of infection. Furthermore, our highly sensitive CA identified more silent SARS-CoV-2 infections than a commercial ELISA (12.1% vs. 6.3%, respectively), and provided insights into the infecting VoC. Seroconversion to endemic HCoVs occurred in early childhood, and vaccination or infection with SARS-CoV-2 did not induce HCoV S1 cross-reactive antibodies. In conclusion, the antibody response to the S1 domain of the spike protein of SARS-CoV-2 is highly specific, providing information about the infecting VoC and revealing clinically silent infections.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Reacciones Cruzadas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , COVID-19/inmunología , COVID-19/diagnóstico , COVID-19/epidemiología , SARS-CoV-2/inmunología , Niño , Adolescente , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Masculino , Glicoproteína de la Espiga del Coronavirus/inmunología , Femenino , Preescolar , Reacciones Cruzadas/inmunología , Estudios Seroepidemiológicos , Lactante , Vacunas contra la COVID-19/inmunología
2.
Front Immunol ; 15: 1352704, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895118

RESUMEN

Background: Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disease with skin barrier defects and a misdirected type 2 immune response against harmless antigens. The skin microbiome in AD is characterized by a reduction in microbial diversity with a dominance of staphylococci, including Staphylococcus epidermidis (S. epidermidis). Objective: To assess whether S. epidermidis antigens play a role in AD, we screened for candidate allergens and studied the T cell and humoral immune response against the extracellular serine protease (Esp). Methods: To identify candidate allergens, we analyzed the binding of human serum IgG4, as a surrogate of IgE, to S. epidermidis extracellular proteins using 2-dimensional immunoblotting and mass spectrometry. We then measured serum IgE and IgG1 binding to recombinant Esp by ELISA in healthy and AD individuals. We also stimulated T cells from AD patients and control subjects with Esp and measured the secreted cytokines. Finally, we analyzed the proteolytic activity of Esp against IL-33 and determined the cleavage sites by mass spectrometry. Results: We identified Esp as the dominant candidate allergen of S. epidermidis. Esp-specific IgE was present in human serum; AD patients had higher concentrations than controls. T cells reacting to Esp were detectable in both AD patients and healthy controls. The T cell response in healthy adults was characterized by IL-17, IL-22, IFN-γ, and IL-10, whereas the AD patients' T cells lacked IL-17 production and released only low amounts of IL-22, IFN-γ, and IL-10. In contrast, Th2 cytokine release was higher in T cells from AD patients than from healthy controls. Mature Esp cleaved and activated the alarmin IL-33. Conclusion: The extracellular serine protease Esp of S. epidermidis can activate IL-33. As an antigen, Esp elicits a type 2-biased antibody and T cell response in AD patients. This suggests that S. epidermidis can aggravate AD through the allergenic properties of Esp.


Asunto(s)
Dermatitis Atópica , Inmunoglobulina E , Serina Proteasas , Staphylococcus epidermidis , Humanos , Staphylococcus epidermidis/inmunología , Dermatitis Atópica/inmunología , Dermatitis Atópica/microbiología , Serina Proteasas/inmunología , Serina Proteasas/metabolismo , Adulto , Masculino , Femenino , Inmunoglobulina E/inmunología , Inmunoglobulina E/sangre , Proteínas Bacterianas/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Citocinas/metabolismo , Citocinas/inmunología , Linfocitos T/inmunología , Alérgenos/inmunología , Interleucina-33/inmunología , Persona de Mediana Edad
3.
Infection ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819638

RESUMEN

PURPOSE: Periprosthetic joint infections (PJIs) are a very demanding complication of arthroplasty. Diagnosis of PJI and pathogen identification pose considerable challenges in clinical practice. We hypothesized that the pathogen-specific immune response to PJI reflects the infection process, provides clinically relevant information on disease course, and has the potential to further optimize antimicrobial therapy. METHODS: We conducted a prospective matched cohort pilot study with 13 patients undergoing two-stage septic revision arthroplasty (PJI patients) between 06/2020 and 06/2021, as well as 11 control patients undergoing one-stage aseptic revision arthroplasty (Non-PJI patients). Pre-, intra- and postoperative serum samples were collected at standardized time points. We developed a custom Luminex®-based quantitative bead-based suspension array (Infection Array; IA), and used it for simultaneous measurement of antibody specificities against 32 pathogens commonly associated with PJI in 267 serum samples. RESULTS: The IA was able to trace the dynamics of the pathogen-specific humoral immune response in all patients against PJI-related pathogens, prominently coagulase-negative staphylococci and streptococci. Pathogen-specific serum antibody titers declined in 62% of PJI patients over the course of treatment, while no changes in antibody titers were observed in 82% of Non-PJI patients during this study. Our serological data strongly suggested that antibody signatures reflect an immune response to microbial invasion. CONCLUSION: Our results provide insights into the pathophysiology of PJI and information on the individual disease courses. The IA is therefore a promising and novel serological tool of high resolution for monitoring the immunoproteomic footprints of infectious pathogens in the course of PJI.

4.
Front Immunol ; 15: 1382911, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807606

RESUMEN

Introduction: COVID-19 vaccines are highly effective in inducing protective immunity. While the serum antibody response to COVID-19 vaccination has been studied in depth, our knowledge of the underlying plasmablast and memory B cell (Bmem) responses is still incomplete. Here, we determined the antibody and B cell response to COVID-19 vaccination in a naïve population and contrasted it with the response to a single influenza vaccination in a primed cohort. In addition, we analyzed the antibody and B cell responses against the four endemic human coronaviruses (HCoVs). Methods: Measurement of specific plasma IgG antibodies was combined with functional analyses of antibody-secreting plasmablasts and Bmems. SARS-CoV-2- and HCoV-specific IgG antibodies were quantified with an in-house bead-based multiplexed immunoassay. Results: The antibody and B cell responses to COVID-19 vaccination reflected the kinetics of a prime-boost immunization, characterized by a slow and moderate primary response and a faster and stronger secondary response. In contrast, the influenza vaccinees possessed robust immune memory for the vaccine antigens prior to vaccination, and the recall vaccination moderately boosted antibody production and Bmem responses. Antibody levels and Bmem responses waned several months after the 2nd COVID-19 vaccination, but were restored upon the 3rd vaccination. The COVID-19 vaccine-induced antibodies mainly targeted novel, non-cross-reactive S1 epitopes of the viral spike protein, while cross-reactive S2 epitopes were less immunogenic. Booster vaccination not only strongly enhanced neutralizing antibodies against an original SARS-CoV-2 strain, but also induced neutralizing antibodies against the Omicron BA.2 variant. We observed a 100% plasma antibody prevalence against the S1 subunits of HCoVs, which was not affected by vaccination. Discussion: Overall, by complementing classical serology with a functional evaluation of plasmablasts and memory B cells we provide new insights into the specificity of COVID-19 vaccine-induced antibody and B cell responses.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Reacciones Cruzadas , Inmunidad Humoral , Inmunoglobulina G , Células B de Memoria , Células Plasmáticas , SARS-CoV-2 , Humanos , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Células B de Memoria/inmunología , SARS-CoV-2/inmunología , Vacunas contra la COVID-19/inmunología , Masculino , Adulto , Reacciones Cruzadas/inmunología , Femenino , Células Plasmáticas/inmunología , Persona de Mediana Edad , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Vacunación , Vacunas contra la Influenza/inmunología , Memoria Inmunológica/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Epítopos de Linfocito B/inmunología , Linfocitos B/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Cinética
5.
mBio ; 15(1): e0022523, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38112465

RESUMEN

IMPORTANCE: The prevalence of multidrug-resistant Staphylococcus aureus is of global concern, and vaccines are urgently needed. The iron-regulated surface determinant protein B (IsdB) of S. aureus was investigated as a vaccine candidate because of its essential role in bacterial iron acquisition but failed in clinical trials despite strong immunogenicity. Here, we reveal an unexpected second function for IsdB in pathogen-host interaction: the bacterial fitness factor IsdB triggers a strong inflammatory response in innate immune cells via Toll-like receptor 4 and the inflammasome, thus acting as a novel pathogen-associated molecular pattern of S. aureus. Our discovery contributes to a better understanding of how S. aureus modulates the immune response, which is necessary for vaccine development against the sophisticated pathogen.


Asunto(s)
Proteínas Bacterianas , Proteínas de Transporte de Catión , Citocinas , Staphylococcus aureus Resistente a Meticilina , Proteína con Dominio Pirina 3 de la Familia NLR , Infecciones Estafilocócicas , Receptor Toll-Like 4 , Humanos , Proteínas Bacterianas/inmunología , Caspasa 1/metabolismo , Proteínas de Transporte de Catión/inmunología , Citocinas/metabolismo , Inflamasomas/metabolismo , Hierro/metabolismo , Staphylococcus aureus Resistente a Meticilina/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Infecciones Estafilocócicas/inmunología , Receptor Toll-Like 4/metabolismo
6.
Clin Immunol ; 256: 109791, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37769787

RESUMEN

Uncontrolled severe chronic rhinosinusitis with nasal polyps (CRSwNP) is associated with elevated levels of type 2 inflammatory cytokines and raised immunoglobulin concentrations in nasal polyp tissue. By using single-cell RNA sequencing, transcriptomics, surface proteomics, and T cell and B cell receptor sequencing, we found the predominant cell types in nasal polyps were shifted from epithelial and mesenchymal cells to inflammatory cells compared to nasal mucosa from healthy controls. Broad expansions of CD4 T effector memory cells, CD4 tissue-resident memory T cells, CD8 T effector memory cells and all subtypes of B cells in nasal polyp tissues. The T and B cell receptor repertoires were skewed in NP. This study highlights the deviated immune response and remodeling mechanisms that contribute to the pathogenesis of uncontrolled severe CRSwNP. CLINICAL IMPLICATIONS: We identified differences in the cellular compositions, transcriptomes, proteomes, and deviations in the immune profiles of T cell and B cell receptors as well as alterations in the intercellular communications in uncontrolled severe CRSwNP patients versus healthy controls, which might help to define potential therapeutic targets in the future.


Asunto(s)
Pólipos Nasales , Rinitis , Sinusitis , Humanos , Rinitis/metabolismo , Pólipos Nasales/patología , Multiómica , Mucosa Nasal/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Enfermedad Crónica
7.
Front Immunol ; 14: 1229562, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731490

RESUMEN

Life-threatening toxic shock syndrome is often caused by the superantigen toxic shock syndrome toxin-1 (TSST-1) produced by Staphylococcus aureus. A well-known risk factor is the lack of neutralizing antibodies. To identify determinants of the anti-TSST-1 antibody response, we examined 976 participants of the German population-based epidemiological Study of Health in Pomerania (SHIP-TREND-0). We measured anti-TSST-1 antibody levels, analyzed the colonization with TSST-1-encoding S. aureus strains, and performed a genome-wide association analysis of genetic risk factors. TSST-1-specific serum IgG levels varied over a range of 4.2 logs and were elevated by a factor of 12.3 upon nasal colonization with TSST-1-encoding S. aureus. Moreover, the anti-TSST-1 antibody levels were strongly associated with HLA class II gene loci. HLA-DRB1*03:01 and HLA-DQB1*02:01 were positively, and HLA-DRB1*01:01 as well as HLA-DQB1*05:01 negatively associated with the anti-TSST-1 antibody levels. Thus, both toxin exposure and HLA alleles affect the human antibody response to TSST-1.


Asunto(s)
Choque Séptico , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Alelos , Estudio de Asociación del Genoma Completo , Choque Séptico/genética , Superantígenos/genética , Infecciones Estafilocócicas/genética
8.
Neurol Res Pract ; 5(1): 42, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37587512

RESUMEN

INTRODUCTION: Immunological alterations associated with increased susceptibility to infection are an essential aspect of stroke pathophysiology. Several immunological functions of adipose tissue are altered by obesity and are accompanied by chronic immune activation. The purpose of this study was to examine immune function (monocytes, granulocytes, cytokines) as a function of body mass index (BMI: 1st group: 25; 2nd group: 25 BMI 30; 3rd group: 30) and changes in body weight post stroke. METHOD: Fat status was assessed using standardized weight measurements on days 1, 2, 3, 4, 5, and 7 after ischemic stroke in a cohort of 40 stroke patients and 16 control patients. Liver fat and visceral fat were assessed by MRI on day 1 or 2 [I] and on day 5 or 7 [II]. Leukocyte subpopulations in peripheral blood, cytokines, chemokines, and adipokine concentrations in sera were quantified. In a second cohort (stroke and control group, n = 17), multiple regression analysis was used to identify correlations between BMI and monocyte and granulocyte subpopulations. RESULTS: Weight and fat loss occurred from the day of admission to day 1 after stroke without further reduction in the postischemic course. No significant changes in liver or visceral fat were observed between MRI I and MRI II. BMI was inversely associated with IL-6 levels, while proinflammatory cytokines such as eotaxin, IFN-ß, IFN -γ and TNF-α were upregulated when BMI increased. The numbers of anti-inflammatory CD14+CD16+ monocytes and CD16+CD62L- granulocytes were reduced in patients with higher BMI values, while that of proinflammatory CD16dimCD62L+ granulocytes was increased. CONCLUSION: A small weight loss in stroke patients was detectable. The data demonstrate a positive correlation between BMI and a proinflammatory poststroke immune response. This provides a potential link to how obesity may affect the clinical outcome of stroke patients.

9.
J Clin Med ; 12(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36675551

RESUMEN

(1) Background: COVID-19 is often associated with significant long-term symptoms and disability, i.e., the long/post-COVID syndrome (PCS). Even after presumably mild COVID-19 infections, an increasing number of patients seek medical help for these long-term sequelae, which can affect various organ systems. The pathogenesis of PCS is not yet understood. Therapy has so far been limited to symptomatic treatment. The Greifswald Post COVID Rehabilitation Study (PoCoRe) aims to follow and deeply phenotype outpatients with PCS in the long term, taking a holistic and comprehensive approach to the analysis of their symptoms, signs and biomarkers. (2) Methods: Post-COVID outpatients are screened for symptoms in different organ systems with a standardized medical history, clinical examination, various questionnaires as well as physical and cardiopulmonary function tests. In addition, biomaterials are collected for the analysis of immunomodulators, cytokines, chemokines, proteome patterns as well as specific (auto)antibodies. Patients are treated according to their individual needs, adhering to the current standard of care. PoCoRe's overall aim is to optimize diagnostics and therapy in PCS patients.

10.
Gut ; 72(7): 1355-1369, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36631247

RESUMEN

OBJECTIVE: In acute pancreatitis (AP), bacterial translocation and subsequent infection of pancreatic necrosis are the main risk factors for severe disease and late death. Understanding how immunological host defence mechanisms fail to protect the intestinal barrier is of great importance in reducing the mortality risk of the disease. Here, we studied the role of the Treg/Th17 balance for maintaining the intestinal barrier function in a mouse model of severe AP. DESIGN: AP was induced by partial duct ligation in C57Bl/6 or DEREG mice, in which regulatory T-cells (Treg) were depleted by intraperitoneal injection of diphtheria toxin. By flow cytometry, functional suppression assays and transcriptional profiling we analysed Treg activation and characterised T-cells of the lamina propria as well as intraepithelial lymphocytes (IELs) regarding their activation and differentiation. Microbiota composition was examined in intestinal samples as well as in murine and human pancreatic necrosis by 16S rRNA gene sequencing. RESULTS: The prophylactic Treg-depletion enhanced the proinflammatory response in an experimental mouse model of AP but stabilised the intestinal immunological barrier function of Th17 cells and CD8+/γδTCR+ IELs. Treg depleted animals developed less bacterial translocation to the pancreas. Duodenal overgrowth of the facultative pathogenic taxa Escherichia/Shigella which associates with severe disease and infected necrosis was diminished in Treg depleted animals. CONCLUSION: Tregs play a crucial role in the counterbalance against systemic inflammatory response syndrome. In AP, Treg-activation disturbs the duodenal barrier function and permits translocation of commensal bacteria into pancreatic necrosis. Targeting Tregs in AP may help to ameliorate the disease course.


Asunto(s)
Pancreatitis Aguda Necrotizante , Linfocitos T Reguladores , Ratones , Humanos , Animales , Enfermedad Aguda , Traslocación Bacteriana , ARN Ribosómico 16S , Ratones Endogámicos C57BL
11.
Front Immunol ; 13: 991295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36300116

RESUMEN

Objective: Acute pancreatitis (AP) is an inflammatory disorder, the severe form of which is burdened with multi-organ dysfunction and high mortality. The pathogenesis of life -threatening organ complications, such as respiratory and renal failure, is unknown. Design: Organ dysfunction was investigated in a mouse model of AP. The influence of monocytes and neutrophils on multi organ dysfunction syndrome (MODS) was investigated in vivo by antibody depletion. Using real-time-fluorescence and deformability-cytometry (RT-DC) analysis we determined the mechanical properties of neutrophils and monocytes during AP. Furthermore, blood samples of pancreatitis patients were used to characterize severity-dependent chemokine profiles according to the revised Atlanta classification. Results: Similar to AP in humans, severe disease in the mouse model associates with organ dysfunction mainly of lung and kidney, which is triggered by a mobilisation of Ly6g-/CD11b+/Ly6c hi monocytes, but not of Ly6g+/CD11b+ neutrophils. Monocyte depletion by anti-CCR2 antibody treatment ameliorated lung function (oxygen consumption) without interfering with the systemic immune response. RT-DC analysis of circulation monocytes showed a significant increase in cell size during SAP, but without a compensatory increase in elasticity. Patient chemokine profiles show a correlation of AP severity with monocyte attracting chemokines like MCP-1 or MIG and with leukocyte mobilisation. Conclusion: In AP, the physical properties of mobilized monocytes, especially their large size, result in an obstruction of the fine capillary systems of the lung and of the kidney glomeruli. A selective depletion of monocytes may represent a treatment strategy for pancreatitis as well as for other inflammation-related disorders.


Asunto(s)
Monocitos , Pancreatitis , Ratones , Animales , Humanos , Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/metabolismo , Enfermedad Aguda , Quimiocinas/metabolismo , Modelos Animales de Enfermedad
12.
EBioMedicine ; 83: 104211, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35963198

RESUMEN

BACKGROUND: Understanding how SARS-CoV-2 affects respiratory centres in the brainstem may help to preclude assisted ventilation for patients in intensive care setting. Viral invasion appears unlikely, although autoimmunity has been implicated, the responsible antigens remain unknown. We previously predicted the involvement of three epitopes within distinct brainstem proteins: disabled homolog 1 (DAB1), apoptosis-inducing-factor-1 (AIFM1), and surfeit-locus-protein-1 (SURF1). METHODS: Here, we used microarrays to screen serum from COVID-19 patients admitted to intensive care and compared those with controls who experienced mild course of the disease. FINDINGS: The results confirm the occurrence of IgG and IgM antibodies against the hypothesised epitopes in COVID-19 patients. Importantly, while IgM levels were similar in both groups, IgG levels were significantly elevated in severely ill patients compared to controls, suggesting a pathogenic role of IgG. INTERPRETATION: The newly discovered anti-neuronal antibodies might be promising markers of severe disease and the targeted peptide epitopes might be used for targeted immunomodulation. Further work is needed to determine whether these antibodies may play a role in long-COVID. FUNDING: AF, CF and PR received support from the German Research Foundation (grants FL 379/22-1, 327654276-SFB 1315, FR 4479/1-1, PR 1274/8-1). SH, DR, and DB received support from the Ministry of Economy, State of Mecklenburg Western Pomerania, Germany (grant COVIDPROTECT: "Optimisation of diagnostic and therapeutic pathways for COVID-19 patients in MV"). SH received support from the Research Group Molecular Medicine University of Greifswald (FVMM, seed funding FOVB-2021-01). AV received support from the Else Kröner Fresenius Foundation and the Alzheimer Research Initiative.


Asunto(s)
COVID-19 , Anticuerpos Antivirales , Tronco Encefálico , COVID-19/complicaciones , Epítopos , Humanos , Inmunoglobulina G , Inmunoglobulina M , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
13.
Nat Commun ; 13(1): 4502, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922425

RESUMEN

Chronic pancreatitis (CP) is characterized by chronic inflammation and the progressive fibrotic replacement of exocrine and endocrine pancreatic tissue. We identify Treg cells as central regulators of the fibroinflammatory reaction by a selective depletion of FOXP3-positive cells in a transgenic mouse model (DEREG-mice) of experimental CP. In Treg-depleted DEREG-mice, the induction of CP results in a significantly increased stroma deposition, the development of exocrine insufficiency and significant weight loss starting from day 14 after disease onset. In CP, FOXP3+CD25+ Treg cells suppress the type-2 immune response by a repression of GATA3+ T helper cells (Th2), GATA3+ innate lymphoid cells type 2 (ILC2) and CD206+ M2-macrophages. A suspected pathomechanism behind the fibrotic tissue replacement may involve an observed dysbalance of Activin A expression in macrophages and of its counter regulator follistatin. Our study identified Treg cells as key regulators of the type-2 immune response and of organ remodeling during CP. The Treg/Th2 axis could be a therapeutic target to prevent fibrosis and preserve functional pancreatic tissue.


Asunto(s)
Pancreatitis Crónica , Linfocitos T Reguladores , Animales , Fibrosis , Factores de Transcripción Forkhead/metabolismo , Inmunidad Innata , Subunidad alfa del Receptor de Interleucina-2/inmunología , Linfocitos/metabolismo , Ratones , Ratones Transgénicos , Pancreatitis Crónica/metabolismo
15.
J Bacteriol ; 204(1): e0018421, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34633872

RESUMEN

Staphylococcus aureus is an opportunistic pathogen that can cause life-threatening infections, particularly in immunocompromised individuals. The high-level virulence of S. aureus largely relies on its diverse and variable collection of virulence factors and immune evasion proteins, including the six serine protease-like proteins SplA to SplF. Spl proteins are expressed by most clinical isolates of S. aureus, but little is known about the molecular mechanisms by which these proteins modify the host's immune response for the benefit of the bacteria. Here, we identify SplB as a protease that inactivates central human complement proteins, i.e., C3, C4, and the activation fragments C3b and C4b, by preferentially cleaving their α-chains. SplB maintained its proteolytic activity in human serum, degrading C3 and C4. SplB further cleaved the components of the terminal complement pathway, C5, C6, C7, C8, and C9. In contrast, the important soluble human complement regulators factor H and C4b-binding protein (C4BP), as well as C1q, were left intact. Thereby, SplB reduced C3b-mediated opsonophagocytosis by human neutrophils as well as C5b-9 deposition on the bacterial surface. In conclusion, we identified the first physiological substrates of the S. aureus extracellular protease SplB. This enzyme inhibits all three complement pathways and blocks opsonophagocytosis. Thus, SplB can be considered a novel staphylococcal complement evasion protein. IMPORTANCE The success of bacterial pathogens in immunocompetent humans depends on the control and inactivation of host immunity. S. aureus, like many other pathogens, efficiently blocks host complement attack early in infection. Aiming to understand the role of the S. aureus-encoded orphan proteases of the Spl operon, we asked whether these proteins play a role in immune escape. We found that SplB inhibits all three complement activation pathways as well as the lytic terminal complement pathway. This blocks the opsonophagocytosis of the bacteria by neutrophils. We also clarified the molecular mechanisms: SplB cleaves the human complement proteins C3, C4, C5, C6, C7, C8, and C9 as well as factor B but not the complement inhibitors factor H and C4BP. Thus, we identify the first physiological substrates of the extracellular protease SplB of S. aureus and characterize SplB as a novel staphylococcal complement evasion protein.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas del Sistema Complemento/metabolismo , Opsonización/fisiología , Péptido Hidrolasas/metabolismo , Staphylococcus aureus/enzimología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Humanos , Péptido Hidrolasas/genética , Staphylococcus aureus/metabolismo
16.
Int J Med Microbiol ; 311(6): 151524, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34371345

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) can colonize dental patients and students, however, studies on the prevalence of MRSA and methicillin-susceptible S. aureus (MSSA) among dental health care workers (DHCW) including use of personal protective equipment (PPE) are scarce. We conducted an observational study (StaphDent study) to (I) determine the prevalence of MRSA and MSSA colonization in DHCW in the region of Mecklenburg Western-Pomerania, Germany, (II) resolve the S. aureus population structure to gain hints on possible transmission events between co-workers, and (III) clarify use of PPE. Nasal swabs were obtained from dentists (n = 149), dental assistants (n = 297) and other dental practice staff (n = 38). Clonal relatedness of MSSA isolates was investigated using spa typing and, in some cases, whole genome sequencing (WGS). PPE use was assessed by questionnaire. While 22.3% (108/485) of the participants were colonized with MSSA, MRSA was not detected. MSSA prevalence was not associated with size of dental practices, gender, age, or duration of employment. The identified 61 spa types grouped into 17 clonal complexes and four sequence types. Most spa types (n = 47) were identified only once. In ten dental practices one spa type occurred twice. WGS data analysis confirmed a close clonal relationship for 4/10 isolate pairs. PPE was regularly used by most dentists and assistants. To conclude, the failure to recover MRSA from DHCW reflects the low MRSA prevalence in this region. Widespread PPE use suggests adherence to routine hygiene protocols. Compared to other regional HCW MRSA rates the consequent usage of PPE seems to be protective.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Atención a la Salud , Personal de Salud , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Estafilocócicas/epidemiología , Staphylococcus aureus/genética
18.
Oncoimmunology ; 10(1): 1938475, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34178430

RESUMEN

The monoclonal antibody against CTLA-4, Ipilimumab, is a first-in-class immune-checkpoint inhibitor approved for treatment of advanced melanoma in adults but not extensively studied in children. In light of the fact that the immune response early in life differs from that of adults, we have applied a human in vitro model stimulating CD4+ T-cells from neonates, children (1-5 years), and adults antigen-specifically with Staphylococcus aureus (S. aureus) for assessment of CTLA-4 blockade early in life. We show that T-cell proliferation as well as frequencies of antigen-specific T-cells (CD40L+CD4+) were enhanced in neonatal T-cells upon CTLA-4 blockade showing a larger variance within the group (F-test p < .0001). Using machine learning algorithm Random Forest, adult and neonatal T-cell responses can be unambiguously categorized (F1 score-0.75) on the basis of their cytokine (co-)expression. Blockade of CTLA-4 enhanced frequencies of IL-8, IFNγ, and IL-10 producers among CD40L+ T-cells. Of note, antigen-specific T-cells from neonates displayed higher cytokine coproduction at baseline, while T-cells from children caught up to neonates, and adults to baseline of children upon CTLA-4 blockade. These findings reveal that in neonatal T-cells blockade of CTLA-4 mainly unleashes the antigen-specific capacity by increasing the numbers of responding T-cells, whereas in children and adults it promotes the coexpression of cytokines by individual T-cells. Thus, CTLA-4 blockade boosts antitumor immunity through different mechanisms depending on the patients' age. These data implicate a strong impact of the developmental stage of the T-cell compartment on the effects of immune-checkpoint therapy.


Asunto(s)
Antígeno CTLA-4/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico , Adulto , Preescolar , Humanos , Inmunoterapia , Lactante , Recién Nacido , Staphylococcus aureus , Linfocitos T
19.
Front Immunol ; 12: 642802, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936060

RESUMEN

Protection against Staphylococcus aureus is determined by the polarization of the anti-bacterial immune effector mechanisms. Virulence factors of S. aureus can modulate these and induce differently polarized immune responses in a single individual. We proposed that this may be due to intrinsic properties of the bacterial proteins. To test this idea, we selected two virulence factors, the serine protease-like protein B (SplB) and the glycerophosphoryl diester phosphodiesterase (GlpQ). In humans naturally exposed to S. aureus, SplB induces a type 2-biased adaptive immune response, whereas GlpQ elicits type 1/type 3 immunity. We injected the recombinant bacterial antigens into the peritoneum of S. aureus-naïve C57BL/6N mice and analyzed the immune response. This was skewed by SplB toward a Th2 profile including specific IgE, whereas GlpQ was weakly immunogenic. To elucidate the influence of adjuvants on the proteins' polarization potential, we studied Montanide ISA 71 VG and Imject™Alum, which promote a Th1 and Th2 response, respectively. Alum strongly increased antibody production to the Th2-polarizing protein SplB, but did not affect the response to GlpQ. Montanide enhanced the antibody production to both S. aureus virulence factors. Montanide also augmented the inflammation in general, whereas Alum had little effect on the cellular immune response. The adjuvants did not override the polarization potential of the S. aureus proteins on the adaptive immune response.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Hidrolasas Diéster Fosfóricas/inmunología , Staphylococcus aureus/inmunología , Factores de Virulencia/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Células Presentadoras de Antígenos/inmunología , Citocinas/biosíntesis , Femenino , Inmunización , Ratones , Ratones Endogámicos C57BL , Células TH1/inmunología , Células Th2/inmunología
20.
Adv Sci (Weinh) ; 8(10): 2003395, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34026437

RESUMEN

Reactive oxygen species (ROS/RNS) are produced during inflammation and elicit protein modifications, but the immunological consequences are largely unknown. Gas plasma technology capable of generating an unmatched variety of ROS/RNS is deployed to mimic inflammation and study the significance of ROS/RNS modifications using the model protein chicken ovalbumin (Ova vs oxOva). Dynamic light scattering and circular dichroism spectroscopy reveal structural modifications in oxOva compared to Ova. T cells from Ova-specific OT-II but not from C57BL/6 or SKH-1 wild type mice presents enhanced activation after Ova addition. OxOva exacerbates this activation when administered ex vivo or in vivo, along with an increased interferon-gamma production, a known anti-melanoma agent. OxOva vaccination of wild type mice followed by inoculation of syngeneic B16F10 Ova-expressing melanoma cells shows enhanced T cell number and activation, decreased tumor burden, and elevated numbers of antigen-presenting cells when compared to their Ova-vaccinated counterparts. Analysis of oxOva using mass spectrometry identifies three hot spots regions rich in oxidative modifications that are associated with the increased T cell activation. Using Ova as a model protein, the findings suggest an immunomodulating role of multi-ROS/RNS modifications that may spur novel research lines in inflammation research and for vaccination strategies in oncology.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Inflamación/inmunología , Melanoma/tratamiento farmacológico , Ovalbúmina/inmunología , Gases em Plasma/química , Linfocitos T/inmunología , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Inflamación/metabolismo , Activación de Linfocitos/inmunología , Melanoma/inmunología , Melanoma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ovalbúmina/química , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA