Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 235: 113427, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35306212

RESUMEN

The Hazard Quotient (HQ) compares field application rate to intrinsic toxicity assessed with sensitive indicator species. As a hazard indicator for risk assessment, the HQ must be calibrated against measured effects under field conditions. Because protection goals may be context specific, we analyse how choice of acceptance criteria affects setting of the HQ and calibrate HQ for various scenarios under the strict condition that no false negative conclusions may be reached. We use Non-Target Arthropod toxicity data from laboratory studies on inert (Tier 1) and on natural substrates (Tier 2) and calibrate the HQ using application rates and arthropod abundance counts from field studies in orchards, arable fields, and hay meadows in 34 locations in Western Europe. With 21 formulations (17 active substances) tested in mostly multi-rate field studies, our reference data base has 120/121 values at Tier 1/Tier 2, respectively. We use the Proportion of Affected Taxa and Duration of Effect to jointly define acceptance criteria, starting with No Observed Effects. Absence of field effects is correctly predicted with HQ < 1.3 at Tier 1 and HQ < 0.48 at Tier 2, but these settings result in a high proportion of false positive outcomes. Increasing accepted duration of effect from 0 to 4 to 8 weeks results in HQ-threshold changes from 1.3 to 6.4 to 250 for Tier 1 studies and from 0.48 to 1.1 to 5.7 for Tier 2 studies. This coincides with a clear decrease in false positive outcomes. Recovery within a year is correctly concluded for 73% of the products passing the corresponding Tier 1 HQ < 2600 and for 92% of products at Tier 2 (HQ <230). Our analysis shows that the calibration is appropriate for a broad geographical range, for in-field and off-field situations and for phytophagous and non-phytophagous species alike.


Asunto(s)
Artrópodos , Animales , Calibración , Europa (Continente) , Medición de Riesgo/métodos
2.
Integr Environ Assess Manag ; 18(5): 1399-1413, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34861099

RESUMEN

Plant protection products to be placed on the market in the European Union need to meet rigorous safety criteria including the testing of lumbricid earthworms, the functionally most important soil organism group in Central European agricultural ecosystems. To address uncertainties and investigate the potential long-term in-crop effects of the fungicide Cantus® containing 50% boscalid as an active substance, a series of standardized earthworm field studies with an overall duration of 5 years per study program was carried out in four German agricultural fields under realistic crop rotation conditions. A two-step approach was chosen to analyze the potential overall long-term effects on earthworms in agricultural fields: (i) an assessment of the earthworm abundance development in the course of the four study programs in relation to the determined actual content of boscalid in soil and (ii) an effect size meta-analysis of earthworm abundance 1 year after treatment for each consecutive year and study program. Measured boscalid concentrations in the soil after multiple applications were well above the maximum boscalid residues observed in agricultural soils across Central Europe. There were isolated statistically significant reductions of earthworm abundance for some species and groups at some time points during the studies, but no consistent relationship to the Cantus® treatments was observed. These results were supported by the meta-analysis, indicating no adverse effects on earthworm populations. Therefore, fluctuations of abundance reflect the natural variation of the populations rather than a concentration-related response. Based on this comprehensive analysis, we conclude that there is no application rate-related effect of the 5-year use of Cantus® on the development of the earthworm communities. The four study programs, paired with a comprehensive evaluation, directly address the concerns about the potential long-term effects of boscalid on earthworms in the field and suggest that multiyear applications do not adversely affect earthworm populations. Integr Environ Assess Manag 2022;18:1399-1413. © 2021 ECT Oekotoxikologie GmbH and BASF SE. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Fungicidas Industriales , Oligoquetos , Agricultura , Animales , Ecosistema , Fungicidas Industriales/toxicidad , Oligoquetos/fisiología , Suelo/química
3.
Environ Toxicol Chem ; 40(10): 2667-2679, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34111321

RESUMEN

The concept of source-sink dynamics as a potentially important component of metapopulation dynamics was introduced in the 1980s. The objective of the present review was to review the considerable body of work that has been developed, to consider its theoretical implications as well as to understand how source-sink dynamics may manifest under field conditions in the specific case of nontarget arthropods in the agricultural environment. Our review concludes that metapopulation dynamics based on field observations are often far more complex than existing theoretical source-sink models would indicate, because they are dependent on numerous population processes and influencing factors. The difficulty in identifying and measuring these factors likely explains why empirical studies assessing source-sink dynamics are scarce. Furthermore, we highlight the importance of considering the spatial and temporal heterogeneity of agricultural landscapes when assessing the population dynamics of nontarget arthropods in the context of the risk from the use of plant protection products. A need is identified to further develop and thoroughly validate predictive population models, which can incorporate all factors relevant to a specific system. Once reliable predictive models for a number of representative nontarget arthropod species are available, they could provide a meaningful tool for refined risk evaluations (higher tier level risk assessment), addressing specific concerns identified at the initial evaluation stages (lower tier level risk assessment). Environ Toxicol Chem 2021;40:2667-2679. © 2021 ERM, FMC, Syngenta, Bayer AG, BASF SE, Corteva agriscience. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Artrópodos , Agricultura , Animales , Ecotoxicología , Dinámica Poblacional , Medición de Riesgo
4.
J Anim Ecol ; 86(3): 521-531, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28164299

RESUMEN

Increasing development of urban environments creates high pressure on green spaces with potential negative impacts on biodiversity and ecosystem services. There is growing evidence that green roofs - rooftops covered with vegetation - can contribute mitigate the loss of urban green spaces by providing new habitats for numerous arthropod species. Whether green roofs can contribute to enhance taxonomic and functional diversity and increase connectivity across urbanized areas remains, however, largely unknown. Furthermore, only limited information is available on how environmental conditions shape green roof arthropod communities. We investigated the community composition of arthropods (Apidae, Curculionidae, Araneae and Carabidae) on 40 green roofs and 40 green sites at ground level in the city of Zurich, Switzerland. We assessed how the site's environmental variables (such as area, height, vegetation, substrate and connectivity among sites) affect species richness and functional diversity using generalized linear models. We used an extension of co-inertia analysis (RLQ) and fourth-corner analysis to highlight the mechanism underlying community assemblages across taxonomic groups on green roof and ground communities. Species richness was higher at ground-level sites, while no difference in functional diversity was found between green roofs and ground sites. Green roof arthropod diversity increased with higher connectivity and plant species richness, irrespective of substrate depth, height and area of green roofs. The species trait analysis reviewed the mechanisms related to the environmental predictors that shape the species assemblages of the different taxa at ground and roof sites. Our study shows the important contribution of green roofs in maintaining high functional diversity of arthropod communities across different taxonomic groups, despite their lower species richness compared with ground sites. Species communities on green roofs revealed to be characterized by specific trait assemblages. The study also provides details on the environmental conditions that influence arthropod diversity and gives new perspectives on how the design of green roofs can be improved to increase their ecological value. Furthermore, the study highlights the importance of integrating green roofs in planning policies which aim to enhance urban habitat connectivity.


Asunto(s)
Abejas/fisiología , Biodiversidad , Ciudades , Escarabajos/fisiología , Ecosistema , Arañas/fisiología , Altitud , Animales , Suiza
5.
Mol Ecol ; 18(11): 2518-31, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19389166

RESUMEN

The colonisation history and genetic structure of the common vole (Microtus arvalis) was investigated in the region of the Alps by analysing the mitochondrial cytochrome b gene (mtDNA) and 19 microsatellite loci (nucDNA) for 137 voles from 52 localities. mtDNA data provided a much refined distribution of three highly divergent evolutionary lineages in the region compared to previous studies. Although high mountain ranges are widely accepted to be barriers for colonisation processes for many organisms and especially small terrestrial mammals, our phylogeographic analyses showed clear evidence of four transalpine colonisation events by the common vole. Individual-based phylogenetic analyses of nucDNA and two alternative Bayesian-clustering approaches revealed a deep genetic structure analogous to mtDNA. Incongruence between nucDNA and mtDNA at the individual level was restricted to the regions of contact between the lineages. mtDNA patterns and strong female philopatry in M. arvalis suggest that the crossings of the Alps occurred during the colonisation of the region when it was free from ice after the last glaciation. nucDNA patterns suggest that some of the transalpine elements of this phylogeographic pattern were subsequently eroded by male-biased gene flow. We conclude that the combination of phylogeography and landscape genetics at the individual level can provide very detailed insights into colonisation events and may even allow differentiation between historical and more recent processes.


Asunto(s)
Arvicolinae/genética , Genética de Población , Filogenia , Animales , Núcleo Celular/genética , Análisis por Conglomerados , Citocromos b/genética , ADN Mitocondrial/genética , Europa (Continente) , Evolución Molecular , Femenino , Flujo Génico , Variación Genética , Genotipo , Geografía , Masculino , Repeticiones de Microsatélite , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA