Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell Chem Biol ; 30(5): 499-512.e5, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37100053

RESUMEN

Respiratory complex I is a multicomponent enzyme conserved between eukaryotic cells and many bacteria, which couples oxidation of electron donors and quinone reduction with proton pumping. Here, we report that protein transport via the Cag type IV secretion system, a major virulence factor of the Gram-negative bacterial pathogen Helicobacter pylori, is efficiently impeded by respiratory inhibition. Mitochondrial complex I inhibitors, including well-established insecticidal compounds, selectively kill H. pylori, while other Gram-negative or Gram-positive bacteria, such as the close relative Campylobacter jejuni or representative gut microbiota species, are not affected. Using a combination of different phenotypic assays, selection of resistance-inducing mutations, and molecular modeling approaches, we demonstrate that the unique composition of the H. pylori complex I quinone-binding pocket is the basis for this hypersensitivity. Comprehensive targeted mutagenesis and compound optimization studies highlight the potential to develop complex I inhibitors as narrow-spectrum antimicrobial agents against this pathogen.


Asunto(s)
Helicobacter pylori , Humanos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Mutagénesis , Mutación , Oxidación-Reducción , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
Adv Sci (Weinh) ; 9(16): e2104979, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398994

RESUMEN

Astrocytes have crucial functions in the central nervous system (CNS) and are major players in many CNS diseases. Research on astrocyte-centered diseases requires efficient and well-characterized gene transfer vectors. Vectors derived from the Adeno-associated virus serotype 9 (AAV9) target astrocytes in the brains of rodents and nonhuman primates. A recombinant (r) synthetic peptide-displaying AAV9 variant, rAAV9P1, that efficiently and selectively transduces cultured human astrocytes, has been described previously. Here, it is shown that rAAV9P1 retains astrocyte-targeting properties upon intravenous injection in mice. Detailed analysis of putative receptors on human astrocytes shows that rAAV9P1 utilizes integrin subunits αv, ß8, and either ß3 or ß5 as well as the AAV receptor AAVR. This receptor pattern is distinct from that of vectors derived from wildtype AAV2 or AAV9. Furthermore, a CRISPR/Cas9 genome-wide knockout screening revealed the involvement of several astrocyte-associated intracellular signaling pathways in the transduction of human astrocytes by rAAV9P1. This study delineates the unique receptor and intracellular pathway signatures utilized by rAAV9P1 for targeting human astrocytes. These results enhance the understanding of the transduction biology of synthetic rAAV vectors for astrocytes and can promote the development of advanced astrocyte-selective gene delivery vehicles for research and clinical applications.


Asunto(s)
Astrocitos , Vectores Genéticos , Animales , Astrocitos/metabolismo , Dependovirus/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Ratones , Transducción Genética
3.
Methods Mol Biol ; 2407: 103-114, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34985662

RESUMEN

Neurocognitive disorders continue to occur in HIV-infected individuals, despite successful antiretroviral therapy. HIV can persist in the brain for decades, where it infects mainly microglial cells and astrocytes. Brain tissues from HIV-infected individuals have been shown to harbor HIV proviruses and to express early viral products with neurotoxic properties, like Tat. Egress of HIV from astrocytes to the periphery in animals further supports a critical role of astrocytes as HIV reservoirs. In vitro studies show that astrocytes can harbor latent HIV proviruses that can be activated by various agents and initiate productive infection of immune cells. Cell culture studies of HIV-infection of astrocytes have depended heavily on rapidly dividing cells derived from tumors or from fetal tissue. However, in adult brains the majority of astrocytes are nondividing. Therefore, cell culture models are needed to investigate the unique properties of latent HIV proviruses in differentiated astrocytes and to compare these with the properties of other HIV reservoirs.This protocol gives guidelines for the culture of the human neural stem cell line HNSC.100 and a stable subpopulation with latent HIV-1 provirus, HNSCLatGFP1.2. The HNSC.100 cell line provides a single cell model system for the study of HIV persistence in proliferating progenitor cells as well as fully differentiated, nondividing astrocytes. The HNSCLatGFP1.2 cell line contains a full-length HIV-1 provirus derived from NL4-3 with GFP-coding sequences in a defective Env reading frame, enabling handling under Biosafety level 2 conditions and convenient observation of provirus reactivation by monitoring GFP expression. The latent provirus can be reactivated by latency reversing agents which allows the analysis of novel latency reversing agents as well as inhibitors of reactivators of latency.


Asunto(s)
Infecciones por VIH , VIH-1 , Células-Madre Neurales , Animales , Astrocitos/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Línea Celular , VIH-1/fisiología , Humanos , Células-Madre Neurales/metabolismo , Provirus , Activación Viral , Latencia del Virus/fisiología
4.
Adv Sci (Weinh) ; 7(8): 1902130, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32328411

RESUMEN

Human adenoviruses (HAdV) are associated with clinical symptoms such as gastroenteritis, keratoconjunctivitis, pneumonia, hepatitis, and encephalitis. In the absence of protective immunity, as in allogeneic bone marrow transplant patients, HAdV infections can become lethal. Alarmingly, various outbreaks of highly pathogenic, pneumotropic HAdV types have been recently reported, causing severe and lethal respiratory diseases. Effective drugs for treatment of HAdV infections are still lacking. The repurposing of drugs approved for other indications is a valuable alternative for the development of new antiviral therapies and is less risky and costly than de novo development. Arsenic trioxide (ATO) is approved for treatment of acute promyelocytic leukemia. Here, it is shown that ATO is a potent inhibitor of HAdV. ATO treatment blocks virus expression and replication by reducing the number and integrity of promyelocytic leukemia (PML) nuclear bodies, important subnuclear structures for HAdV replication. Modification of HAdV proteins with small ubiquitin-like modifiers (SUMO) is also key to HAdV replication. ATO reduces levels of viral SUMO-E2A protein, while increasing SUMO-PML, suggesting that ATO interferes with SUMOylation of proteins crucial for HAdV replication. It is concluded that ATO targets cellular processes key to HAdV replication and is relevant for the development of antiviral intervention strategies.

5.
Sci Rep ; 10(1): 1319, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992728

RESUMEN

Natural products (NP) are a valuable drug resource. However, NP-inspired drug leads are declining, among other reasons due to high re-discovery rates. We developed a conceptual framework using the metabolic fingerprint of entire ecosystems (MeE) to facilitate the discovery of global bioactivity hotspots. We assessed the MeE of 305 sites of diverse aquatic ecosystems, worldwide. All samples were tested for antiviral effects against the human immunodeficiency virus (HIV), followed by a comprehensive screening for cell-modulatory activity by High-Content Screening (HCS). We discovered a very strong HIV-1 inhibition mainly in samples taken from fjords with a strong terrestrial input. Multivariate data integration demonstrated an association of a set of polyphenols with specific biological alterations (endoplasmic reticulum, lysosomes, and NFkB) caused by these samples. Moreover, we found strong HIV-1 inhibition in one unrelated oceanic sample closely matching to HIV-1-inhibitory drugs on a cytological and a chemical level. Taken together, we demonstrate that even without physical purification, a sophisticated strategy of differential filtering, correlation analysis, and multivariate statistics can be employed to guide chemical analysis, to improve de-replication, and to identify ecosystems with promising characteristics as sources for NP discovery.


Asunto(s)
Productos Biológicos , Evaluación Preclínica de Medicamentos , Ecosistema , Metabolómica , Antivirales/química , Antivirales/farmacología , Productos Biológicos/química , Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Química Analítica , Análisis por Conglomerados , Evaluación Preclínica de Medicamentos/métodos , Geografía , Ensayos Analíticos de Alto Rendimiento , Metabolómica/métodos
6.
Sci Rep ; 10(1): 1326, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992748

RESUMEN

Overcoming the global health threat of HIV infection requires continuous pipelines of novel drug candidates. We identified the γ-pyrone polyketides Aureothin/Neoaureothin as potent hits by anti-HIV screening of an extensive natural compound collection. Total synthesis of a structurally diverse group of Aureothin-derivatives successfully identified a lead compound (#7) superior to Aureothin that combines strong anti-HIV activity (IC90<45 nM), photostability and improved cell safety. Compound #7 inhibited de novo virus production from integrated proviruses by blocking the accumulation of HIV RNAs that encode the structural components of virions and include viral genomic RNAs. Thus, the mode-of-action displayed by compound #7 is different from those of all current clinical drugs. Proteomic analysis indicated that compound #7 does not affect global protein expression in primary blood cells and may modulate cellular pathways linked to HIV infection. Compound #7 inhibited multiple HIV genotypes, including HIV-type 1 and 2 and synergistically inhibited HIV in combination with clinical reverse transcriptase and integrase inhibitors. We conclude that compound #7 represents a promising new class of HIV inhibitors that will facilitate the identification of new virus-host interactions exploitable for antiviral attack and holds promise for further drug development.


Asunto(s)
Antivirales/farmacología , Infecciones por VIH/virología , VIH/efectos de los fármacos , VIH/fisiología , Policétidos/farmacología , Replicación Viral/efectos de los fármacos , Antivirales/síntesis química , Antivirales/química , Cromonas/farmacología , Diseño de Fármacos , Sinergismo Farmacológico , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Policétidos/síntesis química , Policétidos/química , Cultivo Primario de Células
7.
Chembiochem ; 21(4): 492-495, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31448469

RESUMEN

Sorbicillinoids are fungal polyketides characterized by highly complex and diverse molecular structures, with considerable stereochemical intricacy combined with a high degree of oxygenation. Many sorbicillinoids possess promising biological activities. An interesting member of this natural product family is sorbicatechol A, which is reported to have antiviral activity, particularly against influenza A virus (H1N1). Through a straightforward, one-pot chemoenzymatic approach with recently developed oxidoreductase SorbC, the characteristic bicyclo[2.2.2]octane core of sorbicatechol is structurally diversified by variation of its natural 2-methoxyphenol substituent. This facilitates the preparation of a focused library of structural analogues bearing substituted aromatic systems, alkanes, heterocycles, and ethers. Fast access to this structural diversity provides an opportunity to explore the antiviral potential of the sorbicatechol family.


Asunto(s)
Antivirales/química , Antivirales/síntesis química , Policétidos , Antivirales/farmacología , VIH/efectos de los fármacos , Alphainfluenzavirus/efectos de los fármacos , Estructura Molecular , Policétidos/síntesis química , Policétidos/química
8.
J Org Chem ; 85(2): 664-673, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31746205

RESUMEN

Genome sequencing and bioinformatic analysis have identified numerous cryptic gene clusters that have the potential to produce novel natural products. Within this work, we identified a cryptic type II PKS gene cluster (skt) from Streptomyces sp. Tü 6314. Facilitated by linear plus linear homologous recombination-mediated recombineering (LLHR), we directly cloned the skt gene cluster using the Streptomyces site-specific integration vector pSET152. Direct cloning allowed for rapid heterologous expression in Streptomyces coelicolor, leading to the identification and structural characterization of six polyketides (three known compounds and new streptoketides), four of which exhibit anti-HIV activities. Our study shows that the pSET152 vector can be directly used for LLHR, expanding the Rec/ET direct cloning toolbox and providing the possibility for rapid heterologous expression of gene clusters from Streptomyces.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Familia de Multigenes , Sintasas Poliquetidas/genética , Policétidos/aislamiento & purificación , Streptomyces/enzimología , Animales , Antivirales/química , Antivirales/aislamiento & purificación , Antivirales/farmacología , Línea Celular , Cromatografía Líquida de Alta Presión/métodos , Clonación Molecular , Pruebas de Sensibilidad Microbiana , Policétidos/química , Policétidos/farmacología , Análisis Espectral/métodos , Streptomyces/genética
9.
Nat Commun ; 10(1): 5770, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852899

RESUMEN

Autophagy is an essential cellular process affecting virus infections and other diseases and Beclin1 (BECN1) is one of its key regulators. Here, we identified S-phase kinase-associated protein 2 (SKP2) as E3 ligase that executes lysine-48-linked poly-ubiquitination of BECN1, thus promoting its proteasomal degradation. SKP2 activity is regulated by phosphorylation in a hetero-complex involving FKBP51, PHLPP, AKT1, and BECN1. Genetic or pharmacological inhibition of SKP2 decreases BECN1 ubiquitination, decreases BECN1 degradation and enhances autophagic flux. Middle East respiratory syndrome coronavirus (MERS-CoV) multiplication results in reduced BECN1 levels and blocks the fusion of autophagosomes and lysosomes. Inhibitors of SKP2 not only enhance autophagy but also reduce the replication of MERS-CoV up to 28,000-fold. The SKP2-BECN1 link constitutes a promising target for host-directed antiviral drugs and possibly other autophagy-sensitive conditions.


Asunto(s)
Autofagia/inmunología , Beclina-1/metabolismo , Infecciones por Coronavirus/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Animales , Autofagia/efectos de los fármacos , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Proteolisis/efectos de los fármacos , Proteínas Quinasas Asociadas a Fase-S/antagonistas & inhibidores , Proteínas Quinasas Asociadas a Fase-S/genética , Ubiquitinación/efectos de los fármacos , Ubiquitinación/inmunología , Células Vero
10.
Bioorg Med Chem ; 27(16): 3595-3604, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31285097

RESUMEN

Inspired by bioactive biaryl-containing natural products found in plants and the marine environment, a series of synthetic compounds belonging to the azaBINOL chiral ligand family was evaluated for antiviral activity against HIV-1. Testing of 39 unique azaBINOLs and two BINOLs in a single-round infectivity assay resulted in the identification of three promising antiviral compounds, including 7-isopropoxy-8-(naphth-1-yl)quinoline (azaBINOL B#24), which exhibited low-micromolar activity without associated cytotoxicity. The active compounds and several close structural analogues were further tested against three different HIV-1 envelope pseudotyped viruses as well as in a full-virus replication system (EASY-HIT). The in vitro studies indicated that azaBINOL B#24 acts on early stages of viral replication before viral assembly and budding. Next we explored B#24's activity against HIV-1 reverse transcriptase (RT) and individually tested for polymerase and RNase H activity. The azaBINOL B#24 inhibits RNase H activity and binds directly to the HIV-1 RT enzyme. Additionally, we observe additive inhibitory activity against pseudotyped viruses when B#24 is dosed in competition with the clinically used non-nucleoside reverse transcriptase inhibitor (NNRTI) efavirenz. When tested against a multi-drug resistant HIV-1 isolate with drug resistance associated mutations in regions encoding for HIV-1 RT and protease, B#24 only exhibits a 5.1-fold net decrease in IC50 value, while efavirenz' activity decreases by 7.6-fold. These results indicate that azaBINOL B#24 is a potentially viable, novel lead for the development of new HIV-1 RNase H inhibitors. Furthermore, this study demonstrates that the survey of libraries of synthetic compounds, designed purely with the goal of facilitating chemical synthesis in mind, may yield unexpected and selective drug leads for the development of new antiviral agents.


Asunto(s)
Fármacos Anti-VIH/uso terapéutico , VIH-1/efectos de los fármacos , Quinolinas/uso terapéutico , Ribonucleasa H/efectos de los fármacos , Fármacos Anti-VIH/farmacología , Humanos , Quinolinas/farmacología
11.
Nucleic Acids Res ; 47(9): 4859-4871, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30892606

RESUMEN

The HIV-1 protein Rev is essential for virus replication and ensures the expression of partially spliced and unspliced transcripts. We identified a ULM (UHM ligand motif) motif in the Arginine-Rich Motif (ARM) of the Rev protein. ULMs (UHM ligand motif) mediate protein interactions during spliceosome assembly by binding to UHM (U2AF homology motifs) domains. Using NMR, biophysical methods and crystallography we show that the Rev ULM binds to the UHMs of U2AF65 and SPF45. The highly conserved Trp45 in the Rev ULM is crucial for UHM binding in vitro, for Rev co-precipitation with U2AF65 in human cells and for proper processing of HIV transcripts. Thus, Rev-ULM interactions with UHM splicing factors contribute to the regulation of HIV-1 transcript processing, also at the splicing level. The Rev ULM is an example of viral mimicry of host short linear motifs that enables the virus to interfere with the host molecular machinery.


Asunto(s)
Infecciones por VIH/genética , VIH-1/genética , Factor de Empalme U2AF/genética , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/genética , Empalme Alternativo/genética , Secuencias de Aminoácidos/genética , Arginina/genética , Regulación Viral de la Expresión Génica/genética , Infecciones por VIH/virología , VIH-1/patogenicidad , Interacciones Huésped-Patógeno/genética , Humanos , Unión Proteica/genética , Factores de Empalme de ARN/genética , Empalmosomas/genética , Replicación Viral/genética
13.
Glia ; 66(2): 413-427, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29119608

RESUMEN

Astrocytes, the most abundant cells in the mammalian brain, perform key functions and are involved in several neurodegenerative diseases. The human immunodeficiency virus (HIV) can persist in astrocytes, contributing to the HIV burden and neurological dysfunctions in infected individuals. While a comprehensive approach to HIV cure must include the targeting of HIV-1 in astrocytes, dedicated tools for this purpose are still lacking. Here we report a novel Adeno-associated virus-based vector (AAV9P1) with a synthetic surface peptide for transduction of astrocytes. Analysis of AAV9P1 transduction efficiencies with single brain cell populations, including primary human brain cells, as well as human brain organoids demonstrated that AAV9P1 targeted terminally differentiated human astrocytes much more efficiently than neurons. We then investigated whether AAV9P1 can be used to deliver HIV-inhibitory genes to astrocytes. To this end we generated AAV9P1 vectors containing genes for HIV-1 proviral editing by CRISPR/Cas9. Latently HIV-1 infected astrocytes transduced with these vectors showed significantly diminished reactivation of proviruses, compared with untransduced cultures. Sequence analysis identified mutations/deletions in key HIV-1 transcriptional control regions. We conclude that AAV9P1 is a promising tool for gene delivery to astrocytes and may facilitate inactivation/destruction of persisting HIV-1 proviruses in astrocyte reservoirs.


Asunto(s)
Astrocitos/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , Dependovirus/fisiología , Regulación Viral de la Expresión Génica/fisiología , Vectores Genéticos/administración & dosificación , VIH-1/fisiología , Astrocitos/efectos de los fármacos , Astrocitos/virología , Línea Celular Transformada , Células Cultivadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/efectos de los fármacos , Prepucio/citología , Regulación Viral de la Expresión Génica/efectos de los fármacos , Células HEK293 , VIH-1/efectos de los fármacos , Humanos , Masculino
14.
Open Biol ; 7(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29021215

RESUMEN

Viruses interact with multiple host cell factors. Some of these are required to promote viral propagation, others have roles in inhibiting infection. Here, we delineate the function of the cellular factor PHF13 (or SPOC1), a putative HIV-1 restriction factor. Early in the HIV-1 replication cycle PHF13 increased the number of integrated proviral copies and the number of infected cells. However, after HIV-1 integration, high levels of PHF13 suppressed viral gene expression. The antiviral activity of PHF13 is counteracted by the viral accessory protein Vpr, which mediates PHF13 degradation. Altogether, the transcriptional master regulator and chromatin binding protein PHF13 does not have purely repressive effects on HIV-1 replication, but also promotes viral integration. By the functional characterization of the dual role of PHF13 during the HIV-1 replication cycle, we reveal a surprising and intricate mechanism through which HIV-1 might regulate the switch from integration to viral gene expression. Furthermore, we identify PHF13 as a cellular target specifically degraded by HIV-1 Vpr.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Factores de Transcripción/metabolismo , Integración Viral , Replicación Viral , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Calpaína/metabolismo , Línea Celular , Proteínas de Unión al ADN/genética , Expresión Génica , Regulación Viral de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genoma Viral , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Infecciones por VIH/genética , Interacciones Huésped-Patógeno , Humanos , Macrófagos/metabolismo , Macrófagos/virología , Modelos Biológicos , Mutación , Proteolisis , Provirus , Factores de Transcripción/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
15.
J Int AIDS Soc ; 20(1): 21865, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28953327

RESUMEN

INTRODUCTION: Restriction factors (RFs) suppress HIV-1 in cell lines and primary cell models. Hence, RFs might be attractive targets for novel antiviral strategies, but their importance for virus control in vivo is controversial. METHODS: We profiled the expression of RFs in primary blood-derived mononuclear cells (PBMC) from therapy-naïve HIV-1 patients and quantified infection. RESULTS: Overall, there was no correlation between individual RF expression and HIV-1 status in total PBMC. However, we identified a T cell population with low levels of intracellular CD2 and reduced expression of SAMHD1, p21 and SerinC5. CD2low T cells with reduced RF expression were markedly positive for HIV-1 p24. In contrast, CD2+ T cells were less infected and expressed higher levels of RFs. CD2low T cell infection correlated with viral loads and was associated with HIV-1 disease progression. CONCLUSIONS: In untreated therapy naïve chronic HIV-1 patients, RF expression in T cells is associated with CD2 expression and seems to influence viral loads. Our study suggests that RFs help to control HIV-1 infection in certain T cells in vivo and supports the potential for RFs as promising targets for therapeutic intervention.


Asunto(s)
Infecciones por VIH/genética , Infecciones por VIH/inmunología , VIH-1/fisiología , Linfocitos T/inmunología , Adulto , Anciano , Femenino , Infecciones por VIH/virología , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Masculino , Persona de Mediana Edad , Proteína 1 que Contiene Dominios SAM y HD/genética , Proteína 1 que Contiene Dominios SAM y HD/inmunología , Linfocitos T/virología , Carga Viral
16.
Mar Drugs ; 14(2)2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26861355

RESUMEN

The sponge Stylissa carteri is known to produce a number of secondary metabolites displaying anti-fouling, anti-inflammatory, and anti-cancer activity. However, the anti-viral potential of metabolites produced by S. carteri has not been extensively explored. In this study, an S. carteri extract was HPLC fractionated and a cell based assay was used to evaluate the effects of HPLC fractions on parameters of Human Immunodeficiency Virus (HIV-1) infection and cell viability. Candidate HIV-1 inhibitory fractions were then analyzed for the presence of potential HIV-1 inhibitory compounds by mass spectrometry, leading to the identification of three previously characterized compounds, i.e., debromohymenialdisine (DBH), hymenialdisine (HD), and oroidin. Commercially available purified versions of these molecules were re-tested to assess their antiviral potential in greater detail. Specifically, DBH and HD exhibit a 30%-40% inhibition of HIV-1 at 3.1 µM and 13 µM, respectively; however, both exhibited cytotoxicity. Conversely, oroidin displayed a 50% inhibition of viral replication at 50 µM with no associated toxicity. Additional experimentation using a biochemical assay revealed that oroidin inhibited the activity of the HIV-1 Reverse Transcriptase up to 90% at 25 µM. Taken together, the chemical search space was narrowed and previously isolated compounds with an unexplored anti-viral potential were found. Our results support exploration of marine natural products for anti-viral drug discovery.


Asunto(s)
Alcaloides/farmacología , Fármacos Anti-VIH/farmacología , VIH-1/efectos de los fármacos , Poríferos/metabolismo , Alcaloides/aislamiento & purificación , Alcaloides/toxicidad , Animales , Fármacos Anti-VIH/aislamiento & purificación , Fármacos Anti-VIH/toxicidad , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión/métodos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Transcriptasa Inversa del VIH/efectos de los fármacos , Humanos , Espectrometría de Masas/métodos , Metabolismo Secundario , Replicación Viral/efectos de los fármacos
17.
Sci Rep ; 6: 20394, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26833261

RESUMEN

Novel therapeutic options are urgently needed to improve global treatment of virus infections. Herbal products with confirmed clinical safety features are attractive starting material for the identification of new antiviral activities. Here we demonstrate that Cistus incanus (Ci) herbal products inhibit human immunodeficiency virus (HIV) infections in vitro. Ci extract inhibited clinical HIV-1 and HIV-2 isolates, and, importantly, a virus isolate with multiple drug resistances, confirming broad anti-HIV activity. Antiviral activity was highly selective for virus particles, preventing primary attachment of the virus to the cell surface and viral envelope proteins from binding to heparin. Bioassay-guided fractionation indicated that Ci extract contains numerous antiviral compounds and therefore has favorably low propensity to induce virus resistance. Indeed, no resistant viruses emerged during 24 weeks of continuous propagation of the virus in the presence of Ci extracts. Finally, Ci extracts also inhibited infection by virus particles pseudotyped with Ebola and Marburg virus envelope proteins, indicating that antiviral activity of Ci extract extends to emerging viral pathogens. These results demonstrate that Ci extracts show potent and broad in vitro antiviral activity against viruses that cause life-threatening diseases in humans and are promising sources of agents that target virus particles.


Asunto(s)
Antivirales/farmacología , Cistus/química , Filoviridae/efectos de los fármacos , VIH-1/efectos de los fármacos , Extractos Vegetales/farmacología , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Antivirales/química , Línea Celular , Células Cultivadas , Relación Dosis-Respuesta a Droga , Farmacorresistencia Viral , Humanos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Polifenoles/química , Polifenoles/farmacología , Replicación Viral/efectos de los fármacos
18.
AIDS ; 29(10): 1147-59, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26035317

RESUMEN

OBJECTIVE: Macroglial cells like astrocytes are key targets for the formation of HIV-1 reservoirs in the brain. The 'shock-and-kill' HIV-1 cure strategy proposes eradication of reservoirs by clinical treatment with latency reversing agents (LRAs). However, virus activation may endanger the brain, due to limited cell turnover, viral neurotoxicity and poor penetration of antiretroviral drugs. Since the brain is not accessible to clinical sampling, we established an experimental model to investigate the LRA effects on HIV-1 latency in macroglial reservoirs. DESIGN: Human neural stem cells (HNSC.100) were used to generate a system that models HIV-1 transcriptional latency in proliferating progenitor, as well as differentiated macroglial cell populations and latency-modulating effects of LRAs and compounds targeting HIV-1 transcription were analysed. METHODS: HNSCs were infected with pseudotyped Env-defective HIV-1 viruses. HIV-1 DNA and RNA levels were quantified by qPCR. Expression of latent GFP-reporter viruses was analysed by confocal microscopy and flow cytometry. NF-κB signalling was investigated by confocal microscopy and chromatin immunoprecipitation. RESULTS: Two of the eight well known LRAs (tumour necrosis factor-alpha, suberoylanilide hydroxamic acid) reactivated HIV-1 in latently infected HNSCs. Tumour necrosis factor-alpha reactivated HIV-1 in progenitor and differentiated populations, whereas suberoylanilide hydroxamic acid was more potent in progenitors. Pre-treatment with inhibitors of key HIV-1 transcription factors (NF-κB, Cdk9) suppressed HIV-1 reactivation. CONCLUSION: We conclude that latent HIV-1 in macroglial reservoirs can be activated by selected LRAs. Identification of small molecules that suppress HIV-1 reactivation supports functional cure strategies. We propose using the HNSC model to develop novel strategies to enforce provirus quiescence in the brain.


Asunto(s)
VIH-1/fisiología , Neuroglía/fisiología , Neuroglía/virología , Provirus/fisiología , Integración Viral , Latencia del Virus , Células Cultivadas , ADN Viral/análisis , ADN Viral/genética , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Humanos , Microscopía Confocal , Modelos Biológicos , Células-Madre Neurales/fisiología , ARN Viral/análisis , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Retrovirology ; 12: 27, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25886562

RESUMEN

BACKGROUND: The human genome contains multiple LTR elements including human endogenous retroviruses (HERVs) that together account for approximately 8-9% of the genomic DNA. At least 40 different HERV groups have been assigned to three major HERV classes on the basis of their homologies to exogenous retroviruses. Although most HERVs are silenced by a variety of genetic and epigenetic mechanisms, they may be reactivated by environmental stimuli such as exogenous viruses and thus may contribute to pathogenic conditions. The objective of this study was to perform an in-depth analysis of the influence of HIV-1 infection on HERV activity in different cell types. RESULTS: A retrovirus-specific microarray that covers major HERV groups from all three classes was used to analyze HERV transcription patterns in three persistently HIV-1 infected cell lines of different cellular origins and in their uninfected counterparts. All three persistently infected cell lines showed increased transcription of multiple class I and II HERV groups. Up-regulated transcription of five HERV taxa (HERV-E, HERV-T, HERV-K (HML-10) and two ERV9 subgroups) was confirmed by quantitative reverse transcriptase PCR analysis and could be reversed by knock-down of HIV-1 expression with HIV-1-specific siRNAs. Cells infected de novo by HIV-1 showed stronger transcriptional up-regulation of the HERV-K (HML-2) group than persistently infected cells of the same origin. Analysis of transcripts from individual members of this group revealed up-regulation of predominantly two proviral loci (ERVK-7 and ERVK-15) on chromosomes 1q22 and 7q34 in persistently infected KE37.1 cells, as well as in de novo HIV-1 infected LC5 cells, while only one single HML-2 locus (ERV-K6) on chromosome 7p22.1 was activated in persistently infected LC5 cells. CONCLUSIONS: Our results demonstrate that HIV-1 can alter HERV transcription patterns of infected cells and indicate a correlation between activation of HERV elements and the level of HIV-1 production. Moreover, our results suggest that the effects of HIV-1 on HERV activity may be far more extensive and complex than anticipated from initial studies with clinical material.


Asunto(s)
Retrovirus Endógenos/fisiología , Infecciones por VIH/virología , VIH-1/crecimiento & desarrollo , Transcripción Genética , Activación Viral , Línea Celular , Retrovirus Endógenos/genética , Perfilación de la Expresión Génica , Humanos , Análisis por Micromatrices
20.
PLoS One ; 9(8): e105478, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25127017

RESUMEN

The TAR DNA binding protein (TDP-43) was originally identified as a host cell factor binding to the HIV-1 LTR and thereby suppressing HIV-1 transcription and gene expression (Ou et al., J.Virol. 1995, 69(6):3584). TDP-43 is a global regulator of transcription, can influence RNA metabolism in many different ways and is ubiquitously expressed. Thus, TDP-43 could be a major factor restricting HIV-1 replication at the level of LTR transcription and gene expression. These facts prompted us to revisit the role of TDP-43 for HIV-1 replication. We utilized established HIV-1 cell culture systems as well as primary cell models and performed a comprehensive analysis of TDP-43 function and investigated its putative impact on HIV-1 gene expression. In HIV-1 infected cells TDP-43 was neither degraded nor sequestered from the nucleus. Furthermore, TDP-43 overexpression as well as siRNA mediated knockdown did not affect HIV-1 gene expression and virus production in T cells and macrophages. In summary, our experiments argue against a restricting role of TDP-43 during HIV-1 replication in immune cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , VIH-1/fisiología , Replicación Viral , Proteínas de Unión al ADN/genética , Expresión Génica , Regulación Viral de la Expresión Génica , Genes Virales , Células HEK293 , Duplicado del Terminal Largo de VIH , Humanos , Células Jurkat , Transporte de Proteínas , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA