Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Eur Radiol Exp ; 8(1): 75, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853182

RESUMEN

BACKGROUND: To study the reproducibility of 23Na magnetic resonance imaging (MRI) measurements from breast tissue in healthy volunteers. METHODS: Using a dual-tuned bilateral 23Na/1H breast coil at 3-T MRI, high-resolution 23Na MRI three-dimensional cones sequences were used to quantify total sodium concentration (TSC) and fluid-attenuated sodium concentration (FASC). B1-corrected TSC and FASC maps were created. Two readers manually measured mean, minimum and maximum TSC and mean FASC values using two sampling methods: large regions of interest (LROIs) and small regions of interest (SROIs) encompassing fibroglandular tissue (FGT) and the highest signal area at the level of the nipple, respectively. The reproducibility of the measurements and correlations between density, age and FGT apparent diffusion coefficient (ADC) values were evaluatedss. RESULTS: Nine healthy volunteers were included. The inter-reader reproducibility of TSC and FASC using SROIs and LROIs was excellent (intraclass coefficient range 0.945-0.979, p < 0.001), except for the minimum TSC LROI measurements (p = 0.369). The mean/minimum LROI TSC and mean LROI FASC values were lower than the respective SROI values (p < 0.001); the maximum LROI TSC values were higher than the SROI TSC values (p = 0.009). TSC correlated inversely with age but not with FGT ADCs. The mean and maximum FGT TSC and FASC values were higher in dense breasts in comparison to non-dense breasts (p < 0.020). CONCLUSIONS: The chosen sampling method and the selected descriptive value affect the measured TSC and FASC values, although the inter-reader reproducibility of the measurements is in general excellent. RELEVANCE STATEMENT: 23Na MRI at 3 T allows the quantification of TSC and FASC sodium concentrations. The sodium measurements should be obtained consistently in a uniform manner. KEY POINTS: • 23Na MRI allows the quantification of total and fluid-attenuated sodium concentrations (TSC/FASC). • Sampling method (large/small region of interest) affects the TSC and FASC values. • Dense breasts have higher TSC and FASC values than non-dense breasts. • The inter-reader reproducibility of TSC and FASC measurements was, in general, excellent. • The results suggest the importance of stratifying the sodium measurements protocol.


Asunto(s)
Mama , Imagen por Resonancia Magnética , Sodio , Humanos , Femenino , Reproducibilidad de los Resultados , Adulto , Imagen por Resonancia Magnética/métodos , Mama/diagnóstico por imagen , Persona de Mediana Edad , Isótopos de Sodio , Voluntarios Sanos , Variaciones Dependientes del Observador , Adulto Joven
2.
Breast Cancer Res ; 25(1): 140, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950273

RESUMEN

The development of therapies that can suppress invasion and prevent metastasis, 'anti-metastatic drugs', is an important area of unmet therapeutic need. The new results of a recent open-label, multicentre randomised trial published in J Clin Oncol showed a significant disease-free survival (DFS) benefit for breast cancer patients receiving presurgical, peritumoral injection of lidocaine, an amide local anaesthetic, which blocks voltage-gated sodium channels (VGSCs). VGSCs are expressed on electrically excitable cells, including neurons and cardiomyocytes, where they sustain rapid membrane depolarisation during action potential firing. As a result of this key biophysical function, VGSCs are important drug targets for excitability-related disorders, including epilepsy, neuropathic pain, affective disorders and cardiac arrhythmia. A growing body of preclinical evidence highlights VGSCs as key protagonists in regulating altered sodium influx in breast cancer cells, thus driving invasion and metastasis. Furthermore, prescription of certain VGSC-inhibiting medications has been associated with reduced cancer incidence and improved survival in several observational studies. Thus, VGSC-inhibiting drugs already in clinical use may be ideal candidates for repurposing as possible anti-metastatic therapies. While these results are promising, further work is required to establish whether other VGSC inhibitors may afford superior metastasis suppression. Finally, increasing preclinical evidence suggests that several other ion channels are also key drivers of cancer hallmarks; thus, there are undoubtedly further opportunities to harness ion transport inhibition that should also be explored.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Transporte Iónico , Supervivencia sin Enfermedad , Sodio/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto
3.
Curr Top Membr ; 92: 71-98, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38007270

RESUMEN

Sodium (Na+) concentration in solid tumours of different origin is highly dysregulated, and this corresponds to the aberrant expression of Na+ transporters. In particular, the α subunits of voltage gated Na+ channels (VGSCs) raise intracellular Na+ concentration ([Na+]i) in malignant cells, which influences the progression of solid tumours, predominantly driving cancer cells towards a more aggressive and metastatic phenotype. Conversely, re-expression of VGSC ß subunits in cancer cells can either enhance tumour progression or promote anti-tumourigenic properties. Metastasis is the leading cause of cancer-related mortality, highlighting an important area of research which urgently requires improved therapeutic interventions. Here, we review the extent to which VGSC subunits are dysregulated in solid tumours, and consider the implications of such dysregulation on solid tumour progression. We discuss current understanding of VGSC-dependent mechanisms underlying increased invasive and metastatic potential of solid tumours, and how the complex relationship between the tumour microenvironment (TME) and VGSC expression may further drive tumour progression, in part due to the interplay of infiltrating immune cells, cancer-associated fibroblasts (CAFs) and insufficient supply of oxygen (hypoxia). Finally, we explore past and present clinical trials that investigate utilising existing VGSC modulators as potential pharmacological options to support adjuvant chemotherapies to prevent cancer recurrence. Such research demonstrates an exciting opportunity to repurpose therapeutics in order to improve the disease-free survival of patients with aggressive solid tumours.


Asunto(s)
Neoplasias , Canales de Sodio Activados por Voltaje , Humanos , Canales de Sodio Activados por Voltaje/metabolismo , Neoplasias/metabolismo , Fenotipo , Sodio/metabolismo , Microambiente Tumoral
4.
Front Mol Biosci ; 10: 1178269, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251079

RESUMEN

Hypoxia in disease describes persistent low oxygen conditions, observed in a range of pathologies, including cancer. In the discovery of biomarkers in biological models, pathophysiological traits present a source of translatable metabolic products for the diagnosis of disease in humans. Part of the metabolome is represented by its volatile, gaseous fraction; the volatilome. Human volatile profiles, such as those found in breath, are able to diagnose disease, however accurate volatile biomarker discovery is required to target reliable biomarkers to develop new diagnostic tools. Using custom chambers to control oxygen levels and facilitate headspace sampling, the MDA-MB-231 breast cancer cell line was exposed to hypoxia (1% oxygen) for 24 h. The maintenance of hypoxic conditions in the system was successfully validated over this time period. Targeted and untargeted gas chromatography mass spectrometry approaches revealed four significantly altered volatile organic compounds when compared to control cells. Three compounds were actively consumed by cells: methyl chloride, acetone and n-Hexane. Cells under hypoxia also produced significant amounts of styrene. This work presents a novel methodology for identification of volatile metabolisms under controlled gas conditions with novel observations of volatile metabolisms by breast cancer cells.

5.
Nat Commun ; 14(1): 1854, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012230

RESUMEN

With phenotypic heterogeneity in whole cell populations widely recognised, the demand for quantitative and temporal analysis approaches to characterise single cell morphology and dynamics has increased. We present CellPhe, a pattern recognition toolkit for the unbiased characterisation of cellular phenotypes within time-lapse videos. CellPhe imports tracking information from multiple segmentation and tracking algorithms to provide automated cell phenotyping from different imaging modalities, including fluorescence. To maximise data quality for downstream analysis, our toolkit includes automated recognition and removal of erroneous cell boundaries induced by inaccurate tracking and segmentation. We provide an extensive list of features extracted from individual cell time series, with custom feature selection to identify variables that provide greatest discrimination for the analysis in question. Using ensemble classification for accurate prediction of cellular phenotype and clustering algorithms for the characterisation of heterogeneous subsets, we validate and prove adaptability using different cell types and experimental conditions.


Asunto(s)
Algoritmos , Rastreo Celular , Imagen de Lapso de Tiempo , Rastreo Celular/métodos
6.
Physiol Rep ; 11(7): e15663, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37017052

RESUMEN

Intracellular Ca2+ signaling and Na+ homeostasis are inextricably linked via ion channels and co-transporters, with alterations in the concentration of one ion having profound effects on the other. Evidence indicates that intracellular Na+ concentration ([Na+ ]i ) is elevated in breast tumors, and that aberrant Ca2+ signaling regulates numerous key cancer hallmark processes. The present study therefore aimed to determine the effects of Na+ depletion on intracellular Ca2+ handling in metastatic breast cancer cell lines. The relationship between Na+ and Ca2+ was probed using fura-2 and SBFI fluorescence imaging and replacement of extracellular Na+ with equimolar N-methyl-D-glucamine (0Na+ /NMDG) or choline chloride (0Na+ /ChoCl). In triple-negative MDA-MB-231 and MDA-MB-468 cells and Her2+ SKBR3 cells, but not ER+ MCF-7 cells, 0Na+ /NMDG and 0Na+ /ChoCl resulted in a slow, sustained depletion in [Na+ ]i that was accompanied by a rapid and sustained increase in intracellular Ca2+ concentration ([Ca2+ ]i ). Application of La3+ in nominal Ca2+ -free conditions had no effect on this response, ruling out reverse-mode NCX activity and Ca2+ entry channels. Moreover, the Na+ -linked [Ca2+ ]i increase was independent of membrane potential hyperpolarization (NS-1619), but was inhibited by pharmacological blockade of IP3 receptors (2-APB), phospholipase C (PLC, U73122) or following depletion of endoplasmic reticulum Ca2+ stores (cyclopiazonic acid). Thus, Na+ is linked to PLC/IP3 -mediated activation of endoplasmic reticulum Ca2+ release in metastatic breast cancer cells and this may have an important role in breast tumors where [Na+ ]i is perturbed.


Asunto(s)
Neoplasias de la Mama , Señalización del Calcio , Humanos , Femenino , Señalización del Calcio/fisiología , Sodio/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Canales Iónicos/metabolismo , Calcio/metabolismo
7.
J Physiol ; 601(9): 1543-1553, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36183245

RESUMEN

Cancers of epithelial origin such as breast, prostate, cervical, gastric, colon and lung cancer account for a large proportion of deaths worldwide. Better treatment of metastasis, the main cause of cancer deaths, is therefore urgently required. Several of these tumours have been shown to have an abnormally high concentration of Na+ ([Na+ ]) and emerging evidence points to this accumulation being due to elevated intracellular [Na+ ]. This poses intriguing questions about the cellular mechanisms underlying Na+ dysregulation in cancer, and its pathophysiological significance. Elevated intracellular [Na+ ] may be due to alterations in activity of the Na+ /K+ -ATPase, and/or increased influx via Na+ channels and Na+ -linked transporters. Maintenance of the electrochemical Na+ gradient across the plasma membrane is vital to power many cellular processes that are highly active in cancer cells, including glucose and glutamine import. Na+ channels are also upregulated in cancer cells, which in turn promotes tumour growth and metastasis. For example, ENaC and ASICs are overexpressed in cancers, increasing invasion and proliferation. In addition, voltage-gated Na+ channels are also upregulated in a range of tumour types, where they promote metastatic cell behaviours via various mechanisms, including membrane potential depolarisation and altered pH regulation. Together, recent findings relating to elevated Na+ in the tumour microenvironment and how this may be regulated by several classes of Na+ channels provide a link between altered Na+ handling and poor clinical outcome. There are new opportunities to leverage this altered Na+ microenvironment for therapeutic benefit, as exemplified by several ongoing clinical trials.


Asunto(s)
Neoplasias de la Mama , Canales de Sodio , Humanos , Femenino , Canales de Sodio/metabolismo , Membrana Celular/metabolismo , Neoplasias de la Mama/metabolismo , Microambiente Tumoral
8.
Metabolites ; 12(7)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35888722

RESUMEN

Volatile compounds, abundant in breath, can be used to accurately diagnose and monitor a range of medical conditions. This offers a noninvasive, low-cost approach with screening applications; however, the uptake of this diagnostic approach has been limited by conflicting published outcomes. Most published reports rely on large scale screening of the public, at single time points and without reference to ambient air. Here, we present a novel approach to volatile sampling from cellular headspace and mouse breath that incorporates multi-time-point analysis and ambient air subtraction revealing compound flux as an effective proxy of active metabolism. This approach to investigating breath volatiles offers a new avenue for disease biomarker discovery and diagnosis. Using gas chromatography mass spectrometry (GC/MS), we focus on low molecular weight, metabolic substrate/by-product compounds and demonstrate that this noninvasive technique is sensitive (reproducible at ~1 µg cellular protein, or ~500,000 cells) and capable of precisely determining cell type, status and treatment. Isolated cellular models represent components of larger mammalian systems, and we show that stress- and pathology-indicative compounds are detectable in mice, supporting further investigation using this methodology as a tool to identify volatile targets in human patients.

9.
J Biol Chem ; 298(8): 102174, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35752364

RESUMEN

The voltage-gated Na+ channel ß1 subunit, encoded by SCN1B, regulates cell surface expression and gating of α subunits and participates in cell adhesion. ß1 is cleaved by α/ß and γ-secretases, releasing an extracellular domain and intracellular domain (ICD), respectively. Abnormal SCN1B expression/function is linked to pathologies including epilepsy, cardiac arrhythmia, and cancer. In this study, we sought to determine the effect of secretase cleavage on ß1 function in breast cancer cells. Using a series of GFP-tagged ß1 constructs, we show that ß1-GFP is mainly retained intracellularly, particularly in the endoplasmic reticulum and endolysosomal pathway, and accumulates in the nucleus. Reduction in endosomal ß1-GFP levels occurred following γ-secretase inhibition, implicating endosomes and/or the preceding plasma membrane as important sites for secretase processing. Using live-cell imaging, we also report ß1ICD-GFP accumulation in the nucleus. Furthermore, ß1-GFP and ß1ICD-GFP both increased Na+ current, whereas ß1STOP-GFP, which lacks the ICD, did not, thus highlighting that the ß1-ICD is necessary and sufficient to increase Na+ current measured at the plasma membrane. Importantly, although the endogenous Na+ current expressed in MDA-MB-231 cells is tetrodotoxin (TTX)-resistant (carried by Nav1.5), the Na+ current increased by ß1-GFP or ß1ICD-GFP was TTX-sensitive. Finally, we found ß1-GFP increased mRNA levels of the TTX-sensitive α subunits SCN1A/Nav1.1 and SCN9A/Nav1.7. Taken together, this work suggests that the ß1-ICD is a critical regulator of α subunit function in cancer cells. Our data further highlight that γ-secretase may play a key role in regulating ß1 function in breast cancer.


Asunto(s)
Neoplasias de la Mama , Canales de Sodio , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Femenino , Humanos , Canal de Sodio Activado por Voltaje NAV1.7 , Sodio/metabolismo , Canales de Sodio/metabolismo , Tetrodotoxina/farmacología , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética
10.
Br J Cancer ; 127(2): 337-349, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35462561

RESUMEN

BACKGROUND: Breast cancer remains a leading cause of death in women and novel imaging biomarkers are urgently required. Here, we demonstrate the diagnostic and treatment-monitoring potential of non-invasive sodium (23Na) MRI in preclinical models of breast cancer. METHODS: Female Rag2-/- Il2rg-/- and Balb/c mice bearing orthotopic breast tumours (MDA-MB-231, EMT6 and 4T1) underwent MRI as part of a randomised, controlled, interventional study. Tumour biology was probed using ex vivo fluorescence microscopy and electrophysiology. RESULTS: 23Na MRI revealed elevated sodium concentration ([Na+]) in tumours vs non-tumour regions. Complementary proton-based diffusion-weighted imaging (DWI) linked elevated tumour [Na+] to increased cellularity. Combining 23Na MRI and DWI measurements enabled superior classification accuracy of tumour vs non-tumour regions compared with either parameter alone. Ex vivo assessment of isolated tumour slices confirmed elevated intracellular [Na+] ([Na+]i); extracellular [Na+] ([Na+]e) remained unchanged. Treatment with specific inward Na+ conductance inhibitors (cariporide, eslicarbazepine acetate) did not affect tumour [Na+]. Nonetheless, effective treatment with docetaxel reduced tumour [Na+], whereas DWI measures were unchanged. CONCLUSIONS: Orthotopic breast cancer models exhibit elevated tumour [Na+] that is driven by aberrantly elevated [Na+]i. Moreover, 23Na MRI enhances the diagnostic capability of DWI and represents a novel, non-invasive biomarker of treatment response with superior sensitivity compared to DWI alone.


Asunto(s)
Neoplasias de la Mama , Sodio , Animales , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Medios de Contraste , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Ratones
11.
J Biol Chem ; 298(3): 101707, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35150740

RESUMEN

Despite extensive basic and clinical research on immune checkpoint regulatory pathways, little is known about the effects of the ionic tumor microenvironment on immune checkpoint expression and function. Here we describe a mechanistic link between Na+/K+-ATPase (NKA) inhibition and activity of the immune checkpoint protein indoleamine-pyrrole 2',3'-dioxygenase 1 (IDO1). We found that IDO1 was necessary and sufficient for production of kynurenine, a downstream tryptophan metabolite, in cancer cells. We developed a spectrophotometric assay to screen a library of 31 model ion transport-targeting compounds for potential effects on IDO1 function in A549 lung and MDA-MB-231 breast cancer cells. This revealed that the cardiac glycosides ouabain and digoxin inhibited kynurenine production at concentrations that did not affect cell survival. NKA inhibition by ouabain and digoxin resulted in increased intracellular Na+ levels and downregulation of IDO1 mRNA and protein levels, which was consistent with the reduction in kynurenine levels. Knockdown of ATP1A1, the ɑ1 subunit of the NKA and target of cardiac glycosides, increased Na+ levels to a lesser extent than cardiac glycoside treatment and did not affect IDO1 expression. However, ATP1A1 knockdown significantly enhanced the effect of cardiac glycosides on IDO1 expression and kynurenine production. Mechanistically, we show that cardiac glycoside treatment resulted in curtailing the length of phosphorylation-mediated stabilization of STAT1, a transcriptional regulator of IDO1 expression, an effect enhanced by ATP1A1 knockdown. Our findings reveal cross talk between ionic modulation via cardiac glycosides and immune checkpoint protein expression in cancer cells with broad mechanistic and clinical implications.


Asunto(s)
Glicósidos Cardíacos , Indolamina-Pirrol 2,3,-Dioxigenasa , Neoplasias , Factor de Transcripción STAT1 , ATPasa Intercambiadora de Sodio-Potasio , Células A549 , Glicósidos Cardíacos/farmacología , Línea Celular Tumoral , Digoxina/farmacología , Humanos , Proteínas de Punto de Control Inmunitario , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/biosíntesis , Quinurenina/metabolismo , Neoplasias/patología , Ouabaína/metabolismo , Ouabaína/farmacología , Factor de Transcripción STAT1/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
12.
Gene ; 821: 146280, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35143945

RESUMEN

tRNA gene transcription by RNA polymerase III (Pol III) is a tightly regulated process, but dysregulated Pol III transcription is widely observed in cancers. Approximately 75% of all breast cancers are positive for expression of Estrogen Receptor alpha (ERα), which acts as a key driver of disease. MCF-7 cells rapidly upregulate tRNA gene transcription in response to estrogen and ChIP-PCR demonstrated ERα enrichment at tRNALeu and 5S rRNA genes in this breast cancer cell line. While these data implicate the ERα as a Pol III transcriptional regulator, how widespread this regulation is across the 631 tRNA genes has yet to be revealed. Through analyses of ERα ChIP-seq datasets, we show that ERα interacts with hundreds of tRNA genes, not only in MCF-7 cells, but also in primary human breast tumours and distant metastases. The extent of ERα association with tRNA genes varies between breast cancer cell lines and does not correlate with levels of ERα binding to its canonical target gene GREB1. Amongst other Pol III-transcribed genes, ERα is consistently enriched at the long non-coding RNA gene RMRP, a positive regulator of cell cycle progression that is subject to focal amplification in tumours. Another Pol III template targeted by ERα is the RN7SL1 gene, which is strongly implicated in breast cancer pathology by inducing inflammatory responses in tumours. Our data indicate that Pol III-transcribed non-coding genes should be added to the list of ERα targets in breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/metabolismo , ARN Largo no Codificante/genética , ARN Citoplasmático Pequeño/genética , ARN de Transferencia/genética , Partícula de Reconocimiento de Señal/genética , Neoplasias de la Mama/genética , Ciclo Celular , Femenino , Humanos , Células MCF-7 , Metástasis de la Neoplasia , ARN Ribosómico 5S/genética , ARN de Transferencia de Leucina/genética
13.
J Breath Res ; 16(2)2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35120340

RESUMEN

Volatile compounds contained in human breath reflect the inner workings of the body. A large number of studies have been published that link individual components of breath to disease, but diagnostic applications remain limited, in part due to inconsistent and conflicting identification of breath biomarkers. New approaches are therefore required to identify effective biomarker targets. Here, volatile organic compounds have been identified in the literature from four metabolically and physiologically distinct diseases and grouped into chemical functional groups (e.g. methylated hydrocarbons or aldehydes; based on known metabolic and enzymatic pathways) to support biomarker discovery and provide new insight on existing data. Using this functional grouping approach, principal component analysis doubled explanatory capacity from 19.1% to 38% relative to single individual compound approaches. Random forest and linear discriminant analysis reveal 93% classification accuracy for cancer. This review and meta-analysis provides insight for future research design by identifying volatile functional groups associated with disease. By incorporating our understanding of the complexities of the human body, along with accounting for variability in methodological and analytical approaches, this work demonstrates that a suite of targeted, functional volatile biomarkers, rather than individual biomarker compounds, will improve accuracy and success in diagnostic research and application.


Asunto(s)
Neoplasias , Compuestos Orgánicos Volátiles , Biomarcadores/análisis , Pruebas Respiratorias , Análisis Discriminante , Humanos , Neoplasias/diagnóstico , Compuestos Orgánicos Volátiles/análisis
14.
Artículo en Inglés | MEDLINE | ID: mdl-32865696

RESUMEN

Ion channels are key regulators of cancer cell pathophysiology. They contribute to a variety of processes such as maintenance of cellular osmolarity and membrane potential, motility (via interactions with the cytoskeleton), invasion, signal transduction, transcriptional activity and cell cycle progression, leading to tumour progression and metastasis. Ion channels thus represent promising targets for cancer therapy. Ion channels are attractive targets because many of them are expressed at the plasma membrane and a broad range of existing inhibitors are already in clinical use for other indications. However, many of the ion channels identified in cancer cells are also active in healthy normal cells, so there is a risk that certain blockers may have off-target effects on normal physiological function. This review describes recent research advances into ion channel inhibitors as anticancer therapeutics. A growing body of evidence suggests that a range of existing and novel Na+, K+, Ca2+ and Cl- channel inhibitors may be effective for suppressing cancer cell proliferation, migration and invasion, as well as enhancing apoptosis, leading to suppression of tumour growth and metastasis, either alone or in combination with standard-of-care therapies. The majority of evidence to date is based on preclinical in vitro and in vivo studies, although there are several examples of ion channel-targeting strategies now reaching early phase clinical trials. Given the strong links between ion channel function and regulation of tumour growth, metastasis and chemotherapy resistance, it is likely that further work in this area will facilitate the development of new therapeutic approaches which will reach the clinic in the future.


Asunto(s)
Neoplasias , Membrana Celular/metabolismo , Membrana Celular/patología , Proliferación Celular , Humanos , Canales Iónicos , Neoplasias/patología , Transducción de Señal
15.
iScience ; 24(4): 102270, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33817575

RESUMEN

Voltage-gated sodium (NaV) channels, initially characterized in excitable cells, have been shown to be aberrantly expressed in non-excitable cancer tissues and cells from epithelial origins such as in breast, lung, prostate, colon, and cervix, whereas they are not expressed in cognate non-cancer tissues. Their activity was demonstrated to promote aggressive and invasive potencies of cancer cells, both in vitro and in vivo, whereas their deregulated expression in cancer tissues has been associated with metastatic progression and cancer-related death. This review proposes NaV channels as pharmacological targets for anticancer treatments providing opportunities for repurposing existing NaV-inhibitors or developing new pharmacological and nutritional interventions.

16.
Front Pharmacol ; 11: 555047, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33123007

RESUMEN

Eslicarbazepine acetate (ESL) is a dibenzazepine anticonvulsant approved as adjunctive treatment for partial-onset epileptic seizures. Following first pass hydrolysis of ESL, S-licarbazepine (S-Lic) represents around 95% of circulating active metabolites. S-Lic is the main enantiomer responsible for anticonvulsant activity and this is proposed to be through the blockade of voltage-gated Na+ channels (VGSCs). ESL and S-Lic both have a voltage-dependent inhibitory effect on the Na+ current in N1E-115 neuroblastoma cells expressing neuronal VGSC subtypes including Nav1.1, Nav1.2, Nav1.3, Nav1.6, and Nav1.7. ESL has not been associated with cardiotoxicity in healthy volunteers, although a prolongation of the electrocardiographic PR interval has been observed, suggesting that ESL may also inhibit cardiac Nav1.5 isoform. However, this has not previously been studied. Here, we investigated the electrophysiological effects of ESL and S-Lic on Nav1.5 using whole-cell patch clamp recording. We interrogated two model systems: (1) MDA-MB-231 metastatic breast carcinoma cells, which endogenously express the "neonatal" Nav1.5 splice variant, and (2) HEK-293 cells stably over-expressing the "adult" Nav1.5 splice variant. We show that both ESL and S-Lic inhibit transient and persistent Na+ current, hyperpolarise the voltage-dependence of fast inactivation, and slow the recovery from channel inactivation. These findings highlight, for the first time, the potent inhibitory effects of ESL and S-Lic on the Nav1.5 isoform, suggesting a possible explanation for the prolonged PR interval observed in patients on ESL treatment. Given that numerous cancer cells have also been shown to express Nav1.5, and that VGSCs potentiate invasion and metastasis, this study also paves the way for future investigations into ESL and S-Lic as potential invasion inhibitors.

17.
J Neuroinflammation ; 17(1): 87, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32192526

RESUMEN

BACKGROUND: An emerging problem in the treatment of breast cancer is the increasing incidence of metastases to the brain. Metastatic brain tumours are incurable and can cause epileptic seizures and cognitive impairment, so better understanding of this niche, and the cellular mechanisms, is urgently required. Microglia are the resident brain macrophage population, becoming "activated" by neuronal injury, eliciting an inflammatory response. Microglia promote proliferation, angiogenesis and invasion in brain tumours and metastases. However, the mechanisms underlying microglial involvement appear complex and better models are required to improve understanding of function. METHODS: Here, we sought to address this need by developing a model to study metastatic breast cancer cell-microglial interactions using intravital imaging combined with ex vivo electrophysiology. We implanted an optical window on the parietal bone to facilitate observation of cellular behaviour in situ in the outer cortex of heterozygous Cx3cr1GFP/+ mice. RESULTS: We detected GFP-expressing microglia in Cx3cr1GFP/+ mice up to 350 µm below the window without significant loss of resolution. When DsRed-expressing metastatic MDA-MB-231 breast cancer cells were implanted in Matrigel under the optical window, significant accumulation of activated microglia around invading tumour cells could be observed. This inflammatory response resulted in significant cortical disorganisation and aberrant spontaneously-occurring local field potential spike events around the metastatic site. CONCLUSIONS: These data suggest that peritumoral microglial activation and accumulation may play a critical role in local tissue changes underpinning aberrant cortical activity, which offers a possible mechanism for the disrupted cognitive performance and seizures seen in patients with metastatic breast cancer.


Asunto(s)
Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Modelos Animales de Enfermedad , Microscopía Intravital/métodos , Microglía , Animales , Línea Celular Tumoral , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microambiente Tumoral/fisiología
18.
J Cell Physiol ; 235(4): 3950-3972, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31612502

RESUMEN

Ion channels can regulate the plasma membrane potential (Vm ) and cell migration as a result of altered ion flux. However, the mechanism by which Vm regulates motility remains unclear. Here, we show that the Nav 1.5 sodium channel carries persistent inward Na+ current which depolarizes the resting Vm at the timescale of minutes. This Nav 1.5-dependent Vm depolarization increases Rac1 colocalization with phosphatidylserine, to which it is anchored at the leading edge of migrating cells, promoting Rac1 activation. A genetically encoded FRET biosensor of Rac1 activation shows that depolarization-induced Rac1 activation results in acquisition of a motile phenotype. By identifying Nav 1.5-mediated Vm depolarization as a regulator of Rac1 activation, we link ionic and electrical signaling at the plasma membrane to small GTPase-dependent cytoskeletal reorganization and cellular migration. We uncover a novel and unexpected mechanism for Rac1 activation, which fine tunes cell migration in response to ionic and/or electric field changes in the local microenvironment.


Asunto(s)
Neoplasias de la Mama/genética , Microambiente Celular/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Proteína de Unión al GTP rac1/genética , Técnicas Biosensibles , Neoplasias de la Mama/patología , Línea Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Movimiento Celular/genética , Citoesqueleto/química , Citoesqueleto/genética , Femenino , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Humanos , Canales Iónicos/genética , Potenciales de la Membrana/genética , Canal de Sodio Activado por Voltaje NAV1.5/química , Transducción de Señal/genética , Proteína de Unión al GTP rac1/química
19.
Cancers (Basel) ; 11(11)2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31661908

RESUMEN

A wide body of evidence suggests that voltage-gated sodium channels (VGSCs) are expressed de novo in several human carcinomas where channel activity promotes a variety of cellular behaviours integral to the metastatic cascade. These include directional motility (including galvanotaxis), pH balance, extracellular proteolysis, and invasion. Contrary to the substantial in vitro data, however, evidence for VGSC involvement in the cancer process in vivo is limited. Here, we critically assess, for the first time, the available in vivo evidence, hierarchically from mRNA level to emerging clinical aspects, including protein-level studies, electrolyte content, animal tests, and clinical imaging. The evidence strongly suggests that different VGSC subtypes (mainly Nav1.5 and Nav1.7) are expressed de novo in human carcinoma tissues and generally parallel the situation in vitro. Consistent with this, tissue electrolyte (sodium) levels, quantified by clinical imaging, are significantly higher in cancer vs. matched non-cancer tissues. These are early events in the acquisition of metastatic potential by the cancer cells. Taken together, the multi-faceted evidence suggests that the VGSC expression has clinical (diagnostic and therapeutic) potential as a prognostic marker, as well as an anti-metastatic target. The distinct advantages offered by the VGSC include especially (1) its embryonic nature, demonstrated most clearly for the predominant neonatal Nav1.5 expression in breast and colon cancer, and (2) the specifically druggable persistent current that VGSCs develop under hypoxic conditions, as in growing tumours, which promotes invasiveness and metastasis.

20.
Biochim Biophys Acta Rev Cancer ; 1872(2): 188304, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31348974

RESUMEN

The concentration of sodium ions (Na+) is raised in solid tumours and can be measured at the cellular, tissue and patient levels. At the cellular level, the Na+ gradient across the membrane powers the transport of H+ ions and essential nutrients for normal activity. The maintenance of the Na+ gradient requires a large proportion of the cell's ATP. Na+ is a major contributor to the osmolarity of the tumour microenvironment, which affects cell volume and metabolism as well as immune function. Here, we review evidence indicating that Na+ handling is altered in tumours, explore our current understanding of the mechanisms that may underlie these alterations and consider the potential consequences for cancer progression. Dysregulated Na+ balance in tumours may open opportunities for new imaging biomarkers and re-purposing of drugs for treatment.


Asunto(s)
Neoplasias/metabolismo , Sodio/metabolismo , Adenosina Trifosfato/metabolismo , Tamaño de la Célula , Homeostasis , Humanos , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA