Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Bioresour Technol ; 408: 131144, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39043281

RESUMEN

Conductive materials (CM) enhance methanogenesis, but there is no clear correlation between conductivity and faster methane production (MP) rates. We investigated if MP by pure cultures of methanogens (Methanobacterium formicicum, Methanospirillum hungatei, Methanothrix harundinacea and Methanosarcina barkeri) is affected by CM (activated carbon (AC), magnetite), and other sustainable alternatives (sand and glass beads, without conductivity, and zeolites (Zeo)). The significant impact of the materials was on M. formicicum as MP was significantly accelerated by non-CM (e.g., sand reduced the lag phase (LP) duration by 48 %), Zeo and AC (LP reduction in 71% and 75 %, respectively). Conductivity was not correlated with LP reduction. Instead, silicon content in the materials was inversely correlated with the time required for complete MP, and silicon per se stimulated M. formicicum's activity. These findings highlight the potential of using non-CM silicon-containing materials in anaerobic digesters to accelerate methanogenesis.


Asunto(s)
Metano , Silicio , Metano/metabolismo , Metano/biosíntesis , Silicio/química , Conductividad Eléctrica , Arena , Vidrio/química
2.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805783

RESUMEN

In anaerobic bioreactors, the electrons produced during the oxidation of organic matter can potentially be used for the biological reduction of pharmaceuticals in wastewaters. Common electron transfer limitations benefit from the acceleration of reactions through utilization of redox mediators (RM). This work explores the potential of carbon nanomaterials (CNM) as RM on the anaerobic removal of ciprofloxacin (CIP). Pristine and tailored carbon nanotubes (CNT) were first tested for chemical reduction of CIP, and pristine CNT was found as the best material, so it was further utilized in biological anaerobic assays with anaerobic granular sludge (GS). In addition, magnetic CNT were prepared and also tested in biological assays, as they are easier to be recovered and reused. In biological tests with CNM, approximately 99% CIP removal was achieved, and the reaction rates increased ≈1.5-fold relatively to the control without CNM. In these experiments, CIP adsorption onto GS and CNM was above 90%. Despite, after applying three successive cycles of CIP addition, the catalytic properties of magnetic CNT were maintained while adsorption decreased to 29 ± 3.2%, as the result of CNM overload by CIP. The results suggest the combined occurrence of different mechanisms for CIP removal: adsorption on GS and/or CNM, and biological reduction or oxidation, which can be accelerated by the presence of CNM. After biological treatment with CNM, toxicity towards Vibrio fischeri was evaluated, resulting in ≈ 46% detoxification of CIP solution, showing the advantages of combining biological treatment with CNM for CIP removal.


Asunto(s)
Ciprofloxacina/metabolismo , Electrones , Nanopartículas de Magnetita/química , Nanotubos de Carbono/química , Aguas del Alcantarillado/microbiología , Contaminantes Químicos del Agua/metabolismo , Adsorción , Aliivibrio fischeri/efectos de los fármacos , Aliivibrio fischeri/crecimiento & desarrollo , Anaerobiosis/fisiología , Biodegradación Ambiental , Reactores Biológicos , Ciprofloxacina/aislamiento & purificación , Humanos , Nanopartículas de Magnetita/ultraestructura , Methanobacterium/metabolismo , Methanobrevibacter/metabolismo , Methanosarcinales/metabolismo , Methanospirillum/metabolismo , Pruebas de Sensibilidad Microbiana , Nanotubos de Carbono/ultraestructura , Oxidación-Reducción , Contaminantes Químicos del Agua/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA